Although aging is considered to be an unavoidable event, recent experimental evidence suggests that the process can be counteracted. Intracellular calcium (Ca2+i) dyshomeostasis, mitochondrial dysfunction, oxidative stress, and lipid dysregulation are critical factors that contribute to senescence-related processes. Ceramides, a pleiotropic class of sphingolipids, are important mediators of cellular senescence, but their role in neuronal aging is still largely unexplored. In this study, we investigated the effects of L-cycloserine (L-CS), an inhibitor of thede novoceramide biosynthesis, on the aging phenotype of cortical neurons cultured for 22 days, a setting employed as anin vitromodel of senescence. Our findings indicate that, compared to control cultures, 'aged' neurons display dysregulation of [Ca2+]ilevels, mitochondrial dysfunction, increased generation of reactive oxygen species (ROS), altered synaptic activity as well as the activation of neuronal death-related molecules. Treatment with L-CS positively affected the senescent phenotype, a result associated with recovery of neuronal [Ca2+]isignaling and reduction of mitochondrial dysfunction and ROS generation. The results suggest that thede novoceramide biosynthesis represents a critical intermediate in the molecular and functional cascade leading to neuronal senescence and identify ceramide biosynthesis inhibitors as promising pharmacological tools to decrease age-related neuronal dysfunctions.
Titolo: | Inhibition of de novo ceramide biosynthesis affects aging phenotype in an in vitro model of neuronal senescence |
Autori: | |
Data di pubblicazione: | 2019 |
Rivista: | |
Abstract: | Although aging is considered to be an unavoidable event, recent experimental evidence suggests that the process can be counteracted. Intracellular calcium (Ca2+i) dyshomeostasis, mitochondrial dysfunction, oxidative stress, and lipid dysregulation are critical factors that contribute to senescence-related processes. Ceramides, a pleiotropic class of sphingolipids, are important mediators of cellular senescence, but their role in neuronal aging is still largely unexplored. In this study, we investigated the effects of L-cycloserine (L-CS), an inhibitor of thede novoceramide biosynthesis, on the aging phenotype of cortical neurons cultured for 22 days, a setting employed as anin vitromodel of senescence. Our findings indicate that, compared to control cultures, 'aged' neurons display dysregulation of [Ca2+]ilevels, mitochondrial dysfunction, increased generation of reactive oxygen species (ROS), altered synaptic activity as well as the activation of neuronal death-related molecules. Treatment with L-CS positively affected the senescent phenotype, a result associated with recovery of neuronal [Ca2+]isignaling and reduction of mitochondrial dysfunction and ROS generation. The results suggest that thede novoceramide biosynthesis represents a critical intermediate in the molecular and functional cascade leading to neuronal senescence and identify ceramide biosynthesis inhibitors as promising pharmacological tools to decrease age-related neuronal dysfunctions. |
Handle: | http://hdl.handle.net/11564/711679 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Granzotto_Aging_2019.pdf | Articolo principale | PDF editoriale | Administrator Richiedi una copia |