We propose a model for the joint evolution of European inflation, the European Central Bank official interest rate and the short-term interest rate, in a stochastic, continuous time setting. We derive the valuation equation for a contingent claim depending potentially on all three factors. This valuation equation reduces to a finite number of Cauchy problems for a degenerate parabolic PDE with non-local terms. We show that the price of the contingent claim is the only viscosity solution of the valuation equation. We also provide an efficient numerical scheme to compute the price and implement it in an example.
Risk Neutral Valuation of Inflation-Linked Interest Rate Derivatives
Antonacci, Flavia;Costantini, Cristina;
2019-01-01
Abstract
We propose a model for the joint evolution of European inflation, the European Central Bank official interest rate and the short-term interest rate, in a stochastic, continuous time setting. We derive the valuation equation for a contingent claim depending potentially on all three factors. This valuation equation reduces to a finite number of Cauchy problems for a degenerate parabolic PDE with non-local terms. We show that the price of the contingent claim is the only viscosity solution of the valuation equation. We also provide an efficient numerical scheme to compute the price and implement it in an example.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.