The somatotropic axis, in addition to its well-known metabolic and endocrine effects, plays a pivotal role in modulation of inflammation. Moreover, growth hormone (GH)-releasing hormone (GHRH) has been involved in the development of various human tumors. In this work we aimed to investigate the consequences of GHRH deficiency on the development of inflammation-associated colon carcinogenesis in a mouse model of isolated GH deficiency due to generalized ablation of the GHRH gene [GHRH knock out (GHRHKO)]. Homozygous GHRHKO (-/-) male mice and wild type (C57/BL6, +/+) male mice as control group, were used. After azoxymetane (AOM)/dextran sodium sulfate (DSS) treatment -/- mice displayed higher Disease Activity Index (DAI) score, and more marked weight loss compared to +/+ animals. Additionally, -/- mice showed a significant increase in total tumors, in particular of large size predominantly localized in distal colon. In colonic tissue of AOM/DSS-treated -/- mice we found the presence of invasive adenocarcinomas, dysplasia and colitis with mucosal ulceration. Conversely, AOM/DSS-treated +/+ mice showed only presence of adenomas, without invasion of sub-mucosa. Treatment with AOM/DSS significantly increased prostaglandin (PG)E2 and 8-iso-PGF2α levels along with cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, nuclear factor kappa B (NF-kB) and inducible nitric oxide synthase (iNOS) gene expression, in colon specimens. The degree of increase of all these parameters was more markedly in -/- than +/+ mice. In conclusion, generalized GHRH ablation increases colon carcinogenesis responsiveness in male mice. Whether this results from lack of GH or GHRH remains to be established.

Growth hormone-releasing hormone (GHRH) deficiency promotes inflammation-associated carcinogenesis

Leone S.;Chiavaroli A.;Recinella L.
;
Di Valerio V.;Veschi S.;Ferrante C.;Orlando G.;Brunetti L.
2020

Abstract

The somatotropic axis, in addition to its well-known metabolic and endocrine effects, plays a pivotal role in modulation of inflammation. Moreover, growth hormone (GH)-releasing hormone (GHRH) has been involved in the development of various human tumors. In this work we aimed to investigate the consequences of GHRH deficiency on the development of inflammation-associated colon carcinogenesis in a mouse model of isolated GH deficiency due to generalized ablation of the GHRH gene [GHRH knock out (GHRHKO)]. Homozygous GHRHKO (-/-) male mice and wild type (C57/BL6, +/+) male mice as control group, were used. After azoxymetane (AOM)/dextran sodium sulfate (DSS) treatment -/- mice displayed higher Disease Activity Index (DAI) score, and more marked weight loss compared to +/+ animals. Additionally, -/- mice showed a significant increase in total tumors, in particular of large size predominantly localized in distal colon. In colonic tissue of AOM/DSS-treated -/- mice we found the presence of invasive adenocarcinomas, dysplasia and colitis with mucosal ulceration. Conversely, AOM/DSS-treated +/+ mice showed only presence of adenomas, without invasion of sub-mucosa. Treatment with AOM/DSS significantly increased prostaglandin (PG)E2 and 8-iso-PGF2α levels along with cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, nuclear factor kappa B (NF-kB) and inducible nitric oxide synthase (iNOS) gene expression, in colon specimens. The degree of increase of all these parameters was more markedly in -/- than +/+ mice. In conclusion, generalized GHRH ablation increases colon carcinogenesis responsiveness in male mice. Whether this results from lack of GH or GHRH remains to be established.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1043661819320225-main Pharmacological Research.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11564/715678
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact