Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-5′-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines. Finally, even if the cross regulation mechanisms between the two different purines (ABP and GBP) are still largely unknown, it is now possible to hypothesize the existence of specific signal paths for guanosine-based nucleotides that are capable of modulating the intensity and duration of the intracellular signal, particularly in excitable tissues such as brain and muscle.

Guanosine-based nucleotides, the sons of a lesser god in the purinergic signal scenario of excitable tissues

Mancinelli R.;Fano-illic G.;Pietrangelo T.;Fulle S.
2020-01-01

Abstract

Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-5′-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines. Finally, even if the cross regulation mechanisms between the two different purines (ABP and GBP) are still largely unknown, it is now possible to hypothesize the existence of specific signal paths for guanosine-based nucleotides that are capable of modulating the intensity and duration of the intracellular signal, particularly in excitable tissues such as brain and muscle.
File in questo prodotto:
File Dimensione Formato  
Mancinelli et al IJMS 2020.pdf

accesso aperto

Dimensione 673.35 kB
Formato Adobe PDF
673.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/717018
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact