The ability of some zwitterionic natural deep eutectic solvents (NADESs) based on N,N,N-trimethylglycine (TMG) and carboxylic acids (oxalic, glycolic and phenylacetic) to act as environmentally friendly solvents for CO2 capture has been investigated. The solubility of CO2 in the NADESs was measured gravimetrically at different temperatures in the range 298.15–333.15 K, and at different pressures in the range 0.1–4 MPa. The effect of the adopted experimental conditions has been discussed. The highest uptake has been observed for phenylacetic acid/TMG DES at 313.15 K and 4 MPa (45.5 mg CO2/g DES). The efficiency of this NADES as CO2 sorbent when reused in subsequent capture cycles has been evaluated. This work might open new perspectives in developing the most appropriate combination of HBA and HBD components of the DESs and the most appropriate operative conditions for an environmentally friendly CO2 capture.

Physical absorption of CO2 in betaine/carboxylic acid-based Natural Deep Eutectic Solvents

Siani G.
Primo
;
Di Profio P.;Fontana A.;Ciulla M.;Canale V.
Ultimo
2020-01-01

Abstract

The ability of some zwitterionic natural deep eutectic solvents (NADESs) based on N,N,N-trimethylglycine (TMG) and carboxylic acids (oxalic, glycolic and phenylacetic) to act as environmentally friendly solvents for CO2 capture has been investigated. The solubility of CO2 in the NADESs was measured gravimetrically at different temperatures in the range 298.15–333.15 K, and at different pressures in the range 0.1–4 MPa. The effect of the adopted experimental conditions has been discussed. The highest uptake has been observed for phenylacetic acid/TMG DES at 313.15 K and 4 MPa (45.5 mg CO2/g DES). The efficiency of this NADES as CO2 sorbent when reused in subsequent capture cycles has been evaluated. This work might open new perspectives in developing the most appropriate combination of HBA and HBD components of the DESs and the most appropriate operative conditions for an environmentally friendly CO2 capture.
File in questo prodotto:
File Dimensione Formato  
2020_JMolLiq_315_113708.pdf

Solo gestori archivio

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 468.12 kB
Formato Adobe PDF
468.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2020_JML 2020_Post-print.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 535.04 kB
Formato Adobe PDF
535.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/726952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact