Glioblastoma (GBM) is the most deadly primary brain tumour and is a paradigmatic example of heterogeneous cancer. Although expanding data propose the phenotypic plasticity exhibited by glioblastoma cells, as a critical feature involved in the tumour development and posttherapy recurrence, the central machinery responsible for their aggressiveness remains elusive. Despite decades of research, the complex biology of the glioblastoma is still unknown. Progress in genetic and epigenetic discoveries has improved diagnostic classification, prognostic information, and therapeutic planning. In the complex model of intercellular signalling, several studies have shown that extracellular vesicles have a key role in the intercellular communication among GBM cells and the tumour microenvironment modulation. The purpose of this review is to summarize the role of the EV-mediated intercellular crosstalk in the glioblastoma physiopathology.

Extracellular Vesicles Involvement in the Modulation of the Glioblastoma Environment

Fausta Ciccocioppo;Paola Lanuti;Marco Marchisio
;
Sebastiano Miscia
2020-01-01

Abstract

Glioblastoma (GBM) is the most deadly primary brain tumour and is a paradigmatic example of heterogeneous cancer. Although expanding data propose the phenotypic plasticity exhibited by glioblastoma cells, as a critical feature involved in the tumour development and posttherapy recurrence, the central machinery responsible for their aggressiveness remains elusive. Despite decades of research, the complex biology of the glioblastoma is still unknown. Progress in genetic and epigenetic discoveries has improved diagnostic classification, prognostic information, and therapeutic planning. In the complex model of intercellular signalling, several studies have shown that extracellular vesicles have a key role in the intercellular communication among GBM cells and the tumour microenvironment modulation. The purpose of this review is to summarize the role of the EV-mediated intercellular crosstalk in the glioblastoma physiopathology.
File in questo prodotto:
File Dimensione Formato  
3961735.pdf

accesso aperto

Descrizione: Review Article
Tipologia: PDF editoriale
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/731353
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact