Crystallization of zeolite Li-A(BW) from kaolinite (Standard Porcelain by the IMERYS Minerals Ltd) through a conventional hydrothermal treatment is here achieved for the first time with no additives as reported in the literature. Moreover lower kaolin calcination temperatures and lower synthesis temperatures are tested and verified in this work. The synthesis process is rather simple as the reaction of kaolinite with alkali occurs very readily after calcination of at 650 °C. Metakaolin is mixed with calculated amount of aluminum hydroxide and lithium hydroxide and the experiment is performed at ambient pressure and 180 ± 0.1 °C. Li-A(BW) is characterized by powder X-ray diffraction, high temperature X-ray diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, thermal analysis and infrared spectroscopy. Calculation of cell parameters (through Rietveld Refinement) and density, specific surface and pore size are also achieved. The amount of amorphous phase in the synthesis powders is estimated with quantitative phase analysis using the combined Rietveld and reference intensity ratio methods. The results become notably attractive in view of a possible industrial transfer of the synthesis protocol.

Improvement in the Synthesis Conditions and Studying the Physicochemical Properties of the Zeolite Li-A(BW) Obtained from a Kaolinitic Rock

Novembre Daniela
;
Del Vecchio Alessandro
2020-01-01

Abstract

Crystallization of zeolite Li-A(BW) from kaolinite (Standard Porcelain by the IMERYS Minerals Ltd) through a conventional hydrothermal treatment is here achieved for the first time with no additives as reported in the literature. Moreover lower kaolin calcination temperatures and lower synthesis temperatures are tested and verified in this work. The synthesis process is rather simple as the reaction of kaolinite with alkali occurs very readily after calcination of at 650 °C. Metakaolin is mixed with calculated amount of aluminum hydroxide and lithium hydroxide and the experiment is performed at ambient pressure and 180 ± 0.1 °C. Li-A(BW) is characterized by powder X-ray diffraction, high temperature X-ray diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, thermal analysis and infrared spectroscopy. Calculation of cell parameters (through Rietveld Refinement) and density, specific surface and pore size are also achieved. The amount of amorphous phase in the synthesis powders is estimated with quantitative phase analysis using the combined Rietveld and reference intensity ratio methods. The results become notably attractive in view of a possible industrial transfer of the synthesis protocol.
File in questo prodotto:
File Dimensione Formato  
Novembre_et_al-2020-Scientific_Reports.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/734314
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact