High bone-implant contact is a crucial factor in the achievement of osseointegration and long time clinical success of dental implants. Micro, nano, microtopography, and oxide layer of dental implants influence tissue response. The lasers were used for achieving an implant surface with homogeneous micro texturing and uncontaminated surface. The present study aimed to characterize the implant surfaces treated by Nd: DPSS Q-sw Laser treatment compared to machined implants. A total of 10 machined implants and 10 lasered surface implants were evaluated in this study. The implant surfaces were evaluated by X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), and metallography to characterize and measure the thickness of the oxide layer on the implant titanium surface. The machined surfaces showed a non-homogeneous oxide layer ranging between 20 and 30 nm. The lasered implant surfaces showed a homogeneous oxide layer ranging between 400 nm and 460 nm in the area of the laser holes, while outside the layer, thickness ranged between 200 nm and 400 nm without microcracks or evidence of damage. Another exciting result after this laser treatment is a topographically controlled, repeatable, homogeneous, and clean surface. This technique can obtain the implant surface without leaving residues of foreign substances on it. The study results indicate that the use of Nd: DPSS Q-sw laser produces a predictable and reproducible treatment able to improve the titanium oxide layer on the dental implant surface.
A novel technique to increase the thickness of TiO2 of dental implants by Nd: DPSS Q-sw laser treatment
Scarano A.
;Lorusso F.
2020-01-01
Abstract
High bone-implant contact is a crucial factor in the achievement of osseointegration and long time clinical success of dental implants. Micro, nano, microtopography, and oxide layer of dental implants influence tissue response. The lasers were used for achieving an implant surface with homogeneous micro texturing and uncontaminated surface. The present study aimed to characterize the implant surfaces treated by Nd: DPSS Q-sw Laser treatment compared to machined implants. A total of 10 machined implants and 10 lasered surface implants were evaluated in this study. The implant surfaces were evaluated by X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), and metallography to characterize and measure the thickness of the oxide layer on the implant titanium surface. The machined surfaces showed a non-homogeneous oxide layer ranging between 20 and 30 nm. The lasered implant surfaces showed a homogeneous oxide layer ranging between 400 nm and 460 nm in the area of the laser holes, while outside the layer, thickness ranged between 200 nm and 400 nm without microcracks or evidence of damage. Another exciting result after this laser treatment is a topographically controlled, repeatable, homogeneous, and clean surface. This technique can obtain the implant surface without leaving residues of foreign substances on it. The study results indicate that the use of Nd: DPSS Q-sw laser produces a predictable and reproducible treatment able to improve the titanium oxide layer on the dental implant surface.File | Dimensione | Formato | |
---|---|---|---|
3.pdf
accesso aperto
Descrizione: Article
Tipologia:
PDF editoriale
Dimensione
6.12 MB
Formato
Adobe PDF
|
6.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.