Recent progress in inkjet printing of parts of biosensors are highlighted, with particular reference to the printing of biologically active molecules. We describe a system constituted by a thermal inkjet printer, adapted to layering a bidimensional array of dots [701 × 701 dots per inch] on solid supports. The printer was used to depose a β-galactosidase (GAL)-containing ink on a polyester sheet, with dots obtained from 10 pL drops, each drop containing in turn 6 pg of enzyme. The activity of GAL after the preparation was determined using a colorimetric probe (Brilliant Blue FCF). The activity loss of the microdeposed enzymes was found to be around 15%, showing that the 2 μsec-lasting thermal shock experienced by the biomolecule into the printhead nozzle affects to a lesser extent the activity of the thermal inkjet deposited enzyme. In conclusion, the most recent findings of our group in this line are depicted, and a view of possible future developments of the " biopolytronics" field is outlined.
Thermal Inkjet Technology for the Microdeposition of Biological Molecules as a Viable Route for the Realization of Biosensors
Fraleoni Morgera A;
2004-01-01
Abstract
Recent progress in inkjet printing of parts of biosensors are highlighted, with particular reference to the printing of biologically active molecules. We describe a system constituted by a thermal inkjet printer, adapted to layering a bidimensional array of dots [701 × 701 dots per inch] on solid supports. The printer was used to depose a β-galactosidase (GAL)-containing ink on a polyester sheet, with dots obtained from 10 pL drops, each drop containing in turn 6 pg of enzyme. The activity of GAL after the preparation was determined using a colorimetric probe (Brilliant Blue FCF). The activity loss of the microdeposed enzymes was found to be around 15%, showing that the 2 μsec-lasting thermal shock experienced by the biomolecule into the printhead nozzle affects to a lesser extent the activity of the thermal inkjet deposited enzyme. In conclusion, the most recent findings of our group in this line are depicted, and a view of possible future developments of the " biopolytronics" field is outlined.File | Dimensione | Formato | |
---|---|---|---|
Anal. Lett., 2004, 37, 1559.pdf
Solo gestori archivio
Descrizione: Original Article
Tipologia:
PDF editoriale
Dimensione
193.87 kB
Formato
Adobe PDF
|
193.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.