This paper explores the properties of pre-test strategies in estimating a linear Cliff-Ord-type spatial model when the researcher is unsure about the nature of the spatial dependence. More specifically, the paper explores the finite sample properties of the pre-test estimators introduced in Florax et al. (2003), which are based on Lagrange Multiplier (LM) tests, within the context of a Monte Carlo study. The performance of those estimators is compared with that of the maximum likelihood (ML) estimator of the encompassing model. We find that, even in a very simple setting, the bias of the estimates generated by pre-testing strategies can be very large and the empirical size of tests can differ substantially from the nominal size. This is in contrast to the ML estimator. However, if the true data generating process corresponds to the spatial error or lag model the issues arising with the pre-test estimators seem to be lessened. © 2014 Elsevier B.V.

On the finite sample properties of pre-test estimators of spatial models

Piras G.;
2014-01-01

Abstract

This paper explores the properties of pre-test strategies in estimating a linear Cliff-Ord-type spatial model when the researcher is unsure about the nature of the spatial dependence. More specifically, the paper explores the finite sample properties of the pre-test estimators introduced in Florax et al. (2003), which are based on Lagrange Multiplier (LM) tests, within the context of a Monte Carlo study. The performance of those estimators is compared with that of the maximum likelihood (ML) estimator of the encompassing model. We find that, even in a very simple setting, the bias of the estimates generated by pre-testing strategies can be very large and the empirical size of tests can differ substantially from the nominal size. This is in contrast to the ML estimator. However, if the true data generating process corresponds to the spatial error or lag model the issues arising with the pre-test estimators seem to be lessened. © 2014 Elsevier B.V.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0166046214000325-main.pdf

Solo gestori archivio

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 302.93 kB
Formato Adobe PDF
302.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/738102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact