We extend to any dimension the quantitative fourth moment theorem on the Poisson setting, recently proved by C. Döbler and G. Peccati (2017). In particular, by adapting the exchangeable pairs couplings construction introduced by I. Nourdin and G. Zheng (2017) to the Poisson framework, we prove our results under the weakest possible assumption of finite fourth moments. This yields a Peccati-Tudor type theorem, as well as an optimal improvement in the univariate case. Finally, a transfer principle “from-Poisson-to-Gaussian” is derived, which is closely related to the universality phenomenon for homogeneous multilinear sums.

Fourth moment theorems on the Poisson space in any dimension

Vidotto A.
;
2018-01-01

Abstract

We extend to any dimension the quantitative fourth moment theorem on the Poisson setting, recently proved by C. Döbler and G. Peccati (2017). In particular, by adapting the exchangeable pairs couplings construction introduced by I. Nourdin and G. Zheng (2017) to the Poisson framework, we prove our results under the weakest possible assumption of finite fourth moments. This yields a Peccati-Tudor type theorem, as well as an optimal improvement in the univariate case. Finally, a transfer principle “from-Poisson-to-Gaussian” is derived, which is closely related to the universality phenomenon for homogeneous multilinear sums.
File in questo prodotto:
File Dimensione Formato  
Doebler,Vidotto,Zheng2018.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 480.14 kB
Formato Adobe PDF
480.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/738224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact