Extracellular vesicles (EVs) are released by shedding during different physiological processes and are increasingly thought to be new potential biomarkers. However, the impact of pre-analytical processing phases on the final measurement is not predictable and for this reason, the translation of basic research into clinical practice has been precluded. Here we have optimized a simple procedure in combination with polychromatic flow cytometry (PFC), to identify, classify, enumerate, and separate circulating EVs from different cell origins. This protocol takes advantage of a lipophilic cationic dye (LCD) able to probe EVs. Moreover, the application of the newly optimized PFC protocol here described allowed the obtainment of repeatable EVs counts. The translation of this PFC protocol to fluorescence-activated cell sorting allowed us to separate EVs from fresh peripheral blood samples. Sorted EVs preparations resulted particularly suitable for proteomic analyses, which we applied to study their protein cargo. Here we show that LCD staining allowed PFC detection and sorting of EVs from fresh body fluids, avoiding pre-analytical steps of enrichment that could impact final results. Therefore, LCD staining is an essential step towards the assessment of EVs clinical significance.

Flow Cytometry Analysis of Circulating Extracellular Vesicle Subtypes from Fresh Peripheral Blood Samples

Marco Marchisio;Pasquale Simeone;Giuseppina Bologna;Eva Ercolino;Laura Pierdomenico;Damiana Pieragostino;Alessia Ventrella;Christian Celia;Luisa Di Marzio;Piero Del Boccio;Antonella Fontana;Domenico Bosco;Sebastiano Miscia
;
Paola Lanuti
2020-01-01

Abstract

Extracellular vesicles (EVs) are released by shedding during different physiological processes and are increasingly thought to be new potential biomarkers. However, the impact of pre-analytical processing phases on the final measurement is not predictable and for this reason, the translation of basic research into clinical practice has been precluded. Here we have optimized a simple procedure in combination with polychromatic flow cytometry (PFC), to identify, classify, enumerate, and separate circulating EVs from different cell origins. This protocol takes advantage of a lipophilic cationic dye (LCD) able to probe EVs. Moreover, the application of the newly optimized PFC protocol here described allowed the obtainment of repeatable EVs counts. The translation of this PFC protocol to fluorescence-activated cell sorting allowed us to separate EVs from fresh peripheral blood samples. Sorted EVs preparations resulted particularly suitable for proteomic analyses, which we applied to study their protein cargo. Here we show that LCD staining allowed PFC detection and sorting of EVs from fresh body fluids, avoiding pre-analytical steps of enrichment that could impact final results. Therefore, LCD staining is an essential step towards the assessment of EVs clinical significance.
File in questo prodotto:
File Dimensione Formato  
ijms-22-00048-v3.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/741191
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 47
social impact