Machine-learning approaches are satisfactorily implemented for classifying and assessing gait events from only surface electromyographic (sEMG) signals during walking. However, it is acknowledged that the choice of sEMG-processing type may affect the reliability of methodologies based on it. Analogously, the number of sEMG signals involved in machine-learning procedure could influence the classification process. Aim of this study is to quantify the impact of different EMGsignal- processing specifications and/or different complexity of the experimental sEMG-protocol (different number of sEMG-sensors) on the performance of a neural-network-based approach for binary classifying gait phases and predicting gait-event timing. To this purpose, sEMG signals are collected from eight leg-muscles in about 10.000 strides from 23 healthy adults during walking and then fed to a multi-layer perceptron model. Four different signal-processing approaches are tested and five experimental set-ups (from four to one sEMG sensors per leg) are compared. Results indicate that both the choice of sEMG processing and the reduction of sEMG-protocol complexity actually affect classification/prediction performances. Moreover, the study succeeds in the double goal of identifying the linear envelope as the sEMG-processing type which reaches the best neural-network performance (classification accuracy of 93.4 ± 2.3 %; mean absolute error 21.6 ± 7.0 and 38.1 ± 15.2 ms for heel-strike/toe-off prediction, respectively) and providing a quantification of the progressive deterioration of classification/prediction performances with the reduction of the number of sensors used (from 93.4 ± 2.3%–79.9 ± 6.1 % for classification accuracy). These findings could be very useful for clinics to the aim of choosing the most suitable approach balancing technical performances, patient comfort, and clinical needs. © 2020 Elsevier Ltd
Influence of EMG-signal processing and experimental set-up on prediction of gait events by neural network
Morbidoni C.;
2021-01-01
Abstract
Machine-learning approaches are satisfactorily implemented for classifying and assessing gait events from only surface electromyographic (sEMG) signals during walking. However, it is acknowledged that the choice of sEMG-processing type may affect the reliability of methodologies based on it. Analogously, the number of sEMG signals involved in machine-learning procedure could influence the classification process. Aim of this study is to quantify the impact of different EMGsignal- processing specifications and/or different complexity of the experimental sEMG-protocol (different number of sEMG-sensors) on the performance of a neural-network-based approach for binary classifying gait phases and predicting gait-event timing. To this purpose, sEMG signals are collected from eight leg-muscles in about 10.000 strides from 23 healthy adults during walking and then fed to a multi-layer perceptron model. Four different signal-processing approaches are tested and five experimental set-ups (from four to one sEMG sensors per leg) are compared. Results indicate that both the choice of sEMG processing and the reduction of sEMG-protocol complexity actually affect classification/prediction performances. Moreover, the study succeeds in the double goal of identifying the linear envelope as the sEMG-processing type which reaches the best neural-network performance (classification accuracy of 93.4 ± 2.3 %; mean absolute error 21.6 ± 7.0 and 38.1 ± 15.2 ms for heel-strike/toe-off prediction, respectively) and providing a quantification of the progressive deterioration of classification/prediction performances with the reduction of the number of sensors used (from 93.4 ± 2.3%–79.9 ± 6.1 % for classification accuracy). These findings could be very useful for clinics to the aim of choosing the most suitable approach balancing technical performances, patient comfort, and clinical needs. © 2020 Elsevier LtdFile | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1746809420303621-main.pdf
Solo gestori archivio
Descrizione: Article
Tipologia:
PDF editoriale
Dimensione
963.52 kB
Formato
Adobe PDF
|
963.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.