Uterine leiomyoma is a benign smooth muscle tumor characterized by a high incidence in women of reproductive age. The aetiology of this tumor is still unknown but established risk factors include high levels of female hormones, family history, African ancestry, early age of menarche and obesity. Here, to identify proteomic features associated with this tumor type, we performed a liquid chromatography-mass spectrometry (LC-MS/MS) analysis of uterine myomas. The identified proteins were subjected to a gene ontology analysis to generate biological functions, molecular processes, and protein networks that were relevant to the uploaded dataset. Pathway-based analysis was an effective approach to investigate the molecular mechanisms underlying the disease and to create biological hypotheses about regulation of our proteins including the identification of upstream regulators and main protein nodes. Moreover, proteomic and in silico data were combined with immunohistochemistry and western blotting to identify a group of proteins representative of some selected pathways, with a dysregulated expression in myoma, pseudocapsule, and normal myometrium samples. Based on these results, we confirmed the over-expression of extracellular matrix components, and estrogen and progesterone receptors in uterine myomas, and proposed biological networks, canonical pathways and functions that may be relevant to the pathophysiology of this tumor.

A proteomic analysis of human uterine myoma

Simeone P.;
2017-01-01

Abstract

Uterine leiomyoma is a benign smooth muscle tumor characterized by a high incidence in women of reproductive age. The aetiology of this tumor is still unknown but established risk factors include high levels of female hormones, family history, African ancestry, early age of menarche and obesity. Here, to identify proteomic features associated with this tumor type, we performed a liquid chromatography-mass spectrometry (LC-MS/MS) analysis of uterine myomas. The identified proteins were subjected to a gene ontology analysis to generate biological functions, molecular processes, and protein networks that were relevant to the uploaded dataset. Pathway-based analysis was an effective approach to investigate the molecular mechanisms underlying the disease and to create biological hypotheses about regulation of our proteins including the identification of upstream regulators and main protein nodes. Moreover, proteomic and in silico data were combined with immunohistochemistry and western blotting to identify a group of proteins representative of some selected pathways, with a dysregulated expression in myoma, pseudocapsule, and normal myometrium samples. Based on these results, we confirmed the over-expression of extracellular matrix components, and estrogen and progesterone receptors in uterine myomas, and proposed biological networks, canonical pathways and functions that may be relevant to the pathophysiology of this tumor.
File in questo prodotto:
File Dimensione Formato  
21 Current Protein and Peptide Science Rizzello et al 2017.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: PDF editoriale
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/756645
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact