Featured Application This study paves the way for future and potential applications of this technology in the treatment of candidiasis, especially in subjects wearing polyacrylic dentures. (1) Background: The objectives of this study were to evaluate the effect of several sessions of the antibacterial protocol of complex electromagnetic fields (CMFs) on planktonic Candida albicans and fungal ability, after treatment with CMFs, to adhere and proliferate on acrylic resin materials. (2) Methods: Planktonic overnight cultures of Candida albicans were subjected to different entities of CMFs treatments. Four test groups were compared: "p1": treated only with the first program of the antibacterial protocol; "p1-p5" subjected to the first five programs; "1 antibacterial" received one complete session of the protocol and "2 antibacterial" received two complete sessions. After the treatments, the number of colony forming units (CFUs) were recorded. Then, C. albicans broth cultures were cultivated on polyacrylic resin discs and evaluated for CFUs and subjected to scanning electron microscope (SEM) analysis. (3) Results: Microbiological analysis showed that CMFs promoted a significant reduction of C. albicans CFUs when the protocol "p1-p5" was applied. No statistically significant differences between test groups were observed if the time of exposure to CMFs was increased. SEM observations and CFUs showed that CMFs treatments have the ability to reduce C. albicans adherence and proliferation on discs. (4) Conclusions: The CMFs showed an antifungal effect as well as a decrease in C. albicans adhesion on polyacrylic resin.

Effects of Complex Electromagnetic Fields on Candida albicans adhesion and proliferation on polyacrilic resin

Morena Petrini;Silvia Di Lodovico;Giovanna Iezzi;Adriano Piattelli;Luigina Cellini
Penultimo
;
Simonetta D’Ercole
Ultimo
2021-01-01

Abstract

Featured Application This study paves the way for future and potential applications of this technology in the treatment of candidiasis, especially in subjects wearing polyacrylic dentures. (1) Background: The objectives of this study were to evaluate the effect of several sessions of the antibacterial protocol of complex electromagnetic fields (CMFs) on planktonic Candida albicans and fungal ability, after treatment with CMFs, to adhere and proliferate on acrylic resin materials. (2) Methods: Planktonic overnight cultures of Candida albicans were subjected to different entities of CMFs treatments. Four test groups were compared: "p1": treated only with the first program of the antibacterial protocol; "p1-p5" subjected to the first five programs; "1 antibacterial" received one complete session of the protocol and "2 antibacterial" received two complete sessions. After the treatments, the number of colony forming units (CFUs) were recorded. Then, C. albicans broth cultures were cultivated on polyacrylic resin discs and evaluated for CFUs and subjected to scanning electron microscope (SEM) analysis. (3) Results: Microbiological analysis showed that CMFs promoted a significant reduction of C. albicans CFUs when the protocol "p1-p5" was applied. No statistically significant differences between test groups were observed if the time of exposure to CMFs was increased. SEM observations and CFUs showed that CMFs treatments have the ability to reduce C. albicans adherence and proliferation on discs. (4) Conclusions: The CMFs showed an antifungal effect as well as a decrease in C. albicans adhesion on polyacrylic resin.
File in questo prodotto:
File Dimensione Formato  
applsci-11-06786.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 4.11 MB
Formato Adobe PDF
4.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/757063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact