Both static and dynamic ambiguous stimuli representing human bodies that perform unimanual or unipedal movements are usually interpreted as right-limbed rather than left-limbed, suggesting that human observers attend to the right side of others more than the left one. Moreover, such a bias is stronger when static human silhouettes are presented in the RVF (right visual field) than in the LVF (left visual field), which might represent a particular instance of embodiment. On the other hand, hemispheric-specific rotational biases, combined with the well-known bias to perceive forward-facing figures, could represent a confounding factor when accounting for such findings. Therefore, we investigated whether the lateralized presentation of an ambiguous rotating human body would affect its perceived handedness/footedness (implying a role of motor representations), its perceived spinning direction (implying a role of visual representations), or both. To this aim, we required participants to indicate the perceived spinning direction (which also unveils the perceived handedness/footedness) of ambiguous stimuli depicting humans with an arm or a leg outstretched. Results indicated that the lateralized presentation of the stimuli affected both their perceived limb laterality (a larger number of figures being interpreted as right-limbed in the RVF than in the LVF) and their perceived spinning direction (a larger number of figures being interpreted as spinning clockwise in the LVF than in the RVF). However, the hemifield of presentation showed a larger effect size on the perceived spinning direction than on the perceived limb laterality. Therefore, as we already proposed, the implicit representation of others’ handedness seems to be affected more by visual than by motor processes during the perception of ambiguous human silhouettes.
Hemifield-specific rotational biases during the observation of ambiguous human silhouettes
Lucafo' C.
Co-primo
;Marzoli D.
Co-primo
;Padulo C.;Malatesta G.;Tommasi L.Ultimo
2021-01-01
Abstract
Both static and dynamic ambiguous stimuli representing human bodies that perform unimanual or unipedal movements are usually interpreted as right-limbed rather than left-limbed, suggesting that human observers attend to the right side of others more than the left one. Moreover, such a bias is stronger when static human silhouettes are presented in the RVF (right visual field) than in the LVF (left visual field), which might represent a particular instance of embodiment. On the other hand, hemispheric-specific rotational biases, combined with the well-known bias to perceive forward-facing figures, could represent a confounding factor when accounting for such findings. Therefore, we investigated whether the lateralized presentation of an ambiguous rotating human body would affect its perceived handedness/footedness (implying a role of motor representations), its perceived spinning direction (implying a role of visual representations), or both. To this aim, we required participants to indicate the perceived spinning direction (which also unveils the perceived handedness/footedness) of ambiguous stimuli depicting humans with an arm or a leg outstretched. Results indicated that the lateralized presentation of the stimuli affected both their perceived limb laterality (a larger number of figures being interpreted as right-limbed in the RVF than in the LVF) and their perceived spinning direction (a larger number of figures being interpreted as spinning clockwise in the LVF than in the RVF). However, the hemifield of presentation showed a larger effect size on the perceived spinning direction than on the perceived limb laterality. Therefore, as we already proposed, the implicit representation of others’ handedness seems to be affected more by visual than by motor processes during the perception of ambiguous human silhouettes.File | Dimensione | Formato | |
---|---|---|---|
Hemifield-Specific Rotational Biases during the Observation of Ambiguous Human Silhouettes.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
PDF editoriale
Dimensione
701.44 kB
Formato
Adobe PDF
|
701.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.