Residual gravity anomalies over Central Italy clearly indicate a prominent regional minimum over the Fucino Basin. Here, we forward model this anomaly along seven cross-sections. The modeling results validate the geometries and petrophysical properties of the Plio-Quaternary units previously proposed by reflection seismic data interpretation. Moreover, we suggest that a thick wedge-shaped sequence is present beneath the Plio-Quaternary post-orogenic units. Based on the inferred density and velocity properties, as well as outcrop evidence from around the Fucino Basin, this sequence would likely represent thick (~1700 m) siliciclastic syn-orogenic Messinian foredeep deposits. The proposed model implies a long-lasting tectonic inheritance history for the Fucino area, which originally hosted primary paleogeographic Mesozoic-Miocene boundaries. In the Messinian-Recent time, the Fucino has continuously represented a first-order tectonic depocenter for siliciclastic sediments, despite differences in tectonic regime (syn-orogenic Messinian, post-orogenic Plio-Quaternary) and palaeoenvironments (Messinian marine flysch, Plio-Quaternary alluvial-lacustrine facies). The compaction-corrected sedimentation rate (~0.89 mm yr−1), suggests a foredeep activity possibly spanning the entire pre-evaporitic, evaporitic and post-evaporitic Messinian time and is comparable to the sedimentation rate observed in the larger Pliocene Apennine foredeep, ~100 km northeast of the study area, suggesting a self-similarity of the belt-foreland system across time and space.
Gravity modeling reveals a Messinian foredeep depocenter beneath the intermontane Fucino Basin (Central Apennines)
Mancinelli P.
;Scisciani V.;
2021-01-01
Abstract
Residual gravity anomalies over Central Italy clearly indicate a prominent regional minimum over the Fucino Basin. Here, we forward model this anomaly along seven cross-sections. The modeling results validate the geometries and petrophysical properties of the Plio-Quaternary units previously proposed by reflection seismic data interpretation. Moreover, we suggest that a thick wedge-shaped sequence is present beneath the Plio-Quaternary post-orogenic units. Based on the inferred density and velocity properties, as well as outcrop evidence from around the Fucino Basin, this sequence would likely represent thick (~1700 m) siliciclastic syn-orogenic Messinian foredeep deposits. The proposed model implies a long-lasting tectonic inheritance history for the Fucino area, which originally hosted primary paleogeographic Mesozoic-Miocene boundaries. In the Messinian-Recent time, the Fucino has continuously represented a first-order tectonic depocenter for siliciclastic sediments, despite differences in tectonic regime (syn-orogenic Messinian, post-orogenic Plio-Quaternary) and palaeoenvironments (Messinian marine flysch, Plio-Quaternary alluvial-lacustrine facies). The compaction-corrected sedimentation rate (~0.89 mm yr−1), suggests a foredeep activity possibly spanning the entire pre-evaporitic, evaporitic and post-evaporitic Messinian time and is comparable to the sedimentation rate observed in the larger Pliocene Apennine foredeep, ~100 km northeast of the study area, suggesting a self-similarity of the belt-foreland system across time and space.File | Dimensione | Formato | |
---|---|---|---|
Mancinelli et al - 2021 - Tectonophysics.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia:
PDF editoriale
Dimensione
5.43 MB
Formato
Adobe PDF
|
5.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.