Objectives: Transthoracic echocardiography (TTE) is the standard technique for assessing aortic stenosis (AS), with effective orifice area (EOA) recommended for grading severity. EOA is operator-dependent, influenced by a number of pitfalls and requires multiple measurements introducing independent and random sources of error. We tested the diagnostic accuracy and precision of aliased orifice area planimetry (AOAcmr), a new, simple, non-invasive technique for grading of AS severity by low-VENC phase-contrast cardiovascular magnetic resonance (CMR) imaging. Methods: Twenty-two consecutive patients with mild, moderate, or severe AS and six age- and sex-matched healthy controls had TTE and CMR examinations on the same day. We performed analysis of agreement and correlation among (i) AOAcmr; (ii) geometric orifice area (GOAcmr) by direct CMR planimetry; (iii) EOAecho by TTE-continuity equation; and (iv) the "gold standard" multimodality EOA (EOAhybrid) obtained by substituting CMR LVOT area into Doppler continuity equation. Results: There was excellent pairwise positive linear correlation among AOAcmr, EOAhybrid, GOAcmr, and EOAecho (p < 0.001); AOAcmr had the highest correlation with EOAhybrid (R 2 = 0.985, p < 0.001). There was good agreement between methods, with the lowest bias (0.019) for the comparison between AOAcmr and EOAhybrid. AOAcmr yielded excellent intra- and inter-rater reliability (intraclass correlation coefficient: 0.997 and 0.998, respectively). Conclusions: Aliased orifice area planimetry by 2D phase contrast imaging is a simple, reproducible, accurate "one-stop shop" CMR method for grading AS, potentially useful when echocardiographic severity assessment is inconclusive or discordant. Larger studies are warranted to confirm and validate these promising preliminary results.

Aliased Flow Signal Planimetry by Cardiovascular Magnetic Resonance Imaging for Grading Aortic Stenosis Severity: A Prospective Pilot Study

Mantini, Cesare;D'Ugo, Emilia;Olivieri, Marzia;Caputi, Cristiano Giovanni;Bufano, Gabriella;Mastrodicasa, Domenico;Calvo Garcia, Darien;Candeloro, Matteo;Tana, Claudio;Caulo, Massimo;Gallina, Sabina;Ricci, Fabrizio
2021-01-01

Abstract

Objectives: Transthoracic echocardiography (TTE) is the standard technique for assessing aortic stenosis (AS), with effective orifice area (EOA) recommended for grading severity. EOA is operator-dependent, influenced by a number of pitfalls and requires multiple measurements introducing independent and random sources of error. We tested the diagnostic accuracy and precision of aliased orifice area planimetry (AOAcmr), a new, simple, non-invasive technique for grading of AS severity by low-VENC phase-contrast cardiovascular magnetic resonance (CMR) imaging. Methods: Twenty-two consecutive patients with mild, moderate, or severe AS and six age- and sex-matched healthy controls had TTE and CMR examinations on the same day. We performed analysis of agreement and correlation among (i) AOAcmr; (ii) geometric orifice area (GOAcmr) by direct CMR planimetry; (iii) EOAecho by TTE-continuity equation; and (iv) the "gold standard" multimodality EOA (EOAhybrid) obtained by substituting CMR LVOT area into Doppler continuity equation. Results: There was excellent pairwise positive linear correlation among AOAcmr, EOAhybrid, GOAcmr, and EOAecho (p < 0.001); AOAcmr had the highest correlation with EOAhybrid (R 2 = 0.985, p < 0.001). There was good agreement between methods, with the lowest bias (0.019) for the comparison between AOAcmr and EOAhybrid. AOAcmr yielded excellent intra- and inter-rater reliability (intraclass correlation coefficient: 0.997 and 0.998, respectively). Conclusions: Aliased orifice area planimetry by 2D phase contrast imaging is a simple, reproducible, accurate "one-stop shop" CMR method for grading AS, potentially useful when echocardiographic severity assessment is inconclusive or discordant. Larger studies are warranted to confirm and validate these promising preliminary results.
File in questo prodotto:
File Dimensione Formato  
Mantini_FCVM 2021.pdf

accesso aperto

Descrizione: Original Research Article
Tipologia: PDF editoriale
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/762246
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact