Purpose: Dynamic susceptibility contrast (DSC) perfusion-weighted MR imaging (PWI) is increasingly used in clinical neuroimaging for a range of conditions. More highly concentrated GBCAs (e.g., gadobutrol) are often preferred for DSC imaging because it is thought that more Gd is present in the volume of interest during first pass for a given equivalent injection rate. However, faster injection of a less viscous GBCA (e.g., gadoteridol) might generate a more compact and narrower contrast bolus thus obviating any perceived benefit of higher Gd concentration. This preliminary study aimed to analyze and compare DSC examinations in the healthy brain hemisphere of patients with brain tumors using gadobutrol and gadoteridol administered at injection rates of 4 and 6 mL/s. Methods: Thirty-nine brain tumor patients studied with DSC-PWI were evaluated. A simplified gamma-variate model function was applied to calculate the mean peak, area under the curve (AUC), and full-width at half-maximum (FHWM) of concentration–time curves derived from ΔR2* signals at four different regions-of-interest (ROIs). Qualitative assessment of the derived CBV maps was also performed independently by 2 neuroradiologists. Results: No qualitative or quantitative differences between the two GBCAs were observed when administered at a flow rate of 4 mL/s. At a flow rate of 6 mL/s, gadoteridol showed lower FWHM values. Conclusion: Gadobutrol and gadoteridol are equivalent for clinical assessment of qualitative CBV maps and quantitative perfusion parameters (FHWM) at a flow rate of 4 mL/s. At 6 mL/s, gadoteridol produces a narrower bolus shape and potentially improves quantitative assessment of perfusion parameters.

Dynamic susceptibility MR perfusion imaging of the brain: not a question of contrast agent molarity

Panara V.
;
Chiacchiaretta P.;Rapino M.;Maruotti V.;Parenti M.;Piccirilli E.;Delli Pizzi A.;Caulo M.
2021-01-01

Abstract

Purpose: Dynamic susceptibility contrast (DSC) perfusion-weighted MR imaging (PWI) is increasingly used in clinical neuroimaging for a range of conditions. More highly concentrated GBCAs (e.g., gadobutrol) are often preferred for DSC imaging because it is thought that more Gd is present in the volume of interest during first pass for a given equivalent injection rate. However, faster injection of a less viscous GBCA (e.g., gadoteridol) might generate a more compact and narrower contrast bolus thus obviating any perceived benefit of higher Gd concentration. This preliminary study aimed to analyze and compare DSC examinations in the healthy brain hemisphere of patients with brain tumors using gadobutrol and gadoteridol administered at injection rates of 4 and 6 mL/s. Methods: Thirty-nine brain tumor patients studied with DSC-PWI were evaluated. A simplified gamma-variate model function was applied to calculate the mean peak, area under the curve (AUC), and full-width at half-maximum (FHWM) of concentration–time curves derived from ΔR2* signals at four different regions-of-interest (ROIs). Qualitative assessment of the derived CBV maps was also performed independently by 2 neuroradiologists. Results: No qualitative or quantitative differences between the two GBCAs were observed when administered at a flow rate of 4 mL/s. At a flow rate of 6 mL/s, gadoteridol showed lower FWHM values. Conclusion: Gadobutrol and gadoteridol are equivalent for clinical assessment of qualitative CBV maps and quantitative perfusion parameters (FHWM) at a flow rate of 4 mL/s. At 6 mL/s, gadoteridol produces a narrower bolus shape and potentially improves quantitative assessment of perfusion parameters.
File in questo prodotto:
File Dimensione Formato  
Panara2022_Article_DynamicSusceptibilityMRPerfusi.pdf

Solo gestori archivio

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/767482
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact