Amplification or mutation of the Her2 oncoantigen in human mammary glands leads to the development of an aggressive breast carcinoma. Several features of this breast carcinoma are reproduced in mammary carcinomas that spontaneously arise in female transgenic mice bearing the activated rat Her2 oncogene under transcriptional control of the mouse mammary tumor virus promoter-BALB-neuT (neuT) mice. We previously demonstrated that carcinoma progression in neuT mice can be prevented by DNA vaccination with RHuT, a plasmid coding for a chimeric rat/human Her2 protein. RHuT vaccination exerts an antitumor effect, mostly mediated by the induction of a strong anti-rat Her2 antibody response. IgG induced by RHuT vaccine mainly acts by blocking Her2 signaling, thus impairing cell cycle progression and inducing apoptosis of cancer cells, but other indirect effector mechanisms could be involved in the antibody-mediated protection. The recruitment of cells with perforin-dependent cytotoxic activity, able to perform antibody-dependent cellular cytotoxicity, has already been investigated. Less is known about the role of the complement system in sustaining antitumor response through complement-dependent cytotoxicity and cellular cytotoxicity in vaccinated mice. This work highlights that the weight of such mechanisms in RHuT-induced cancer protection is different in transplantable versus autochthonous Her2+ tumor models. These results may shed new light on the effector mechanisms involved in antibody-dependent anti-cancer responses, which might be exploited to ameliorate the therapy of Her2+ breast cancer.

Role of ADCC, CDC, and CDCC in Vaccine-Mediated Protection against Her2 Mammary Carcinogenesis

Lamolinara A.;Del Pizzo F.;Iezzi M.;
2022-01-01

Abstract

Amplification or mutation of the Her2 oncoantigen in human mammary glands leads to the development of an aggressive breast carcinoma. Several features of this breast carcinoma are reproduced in mammary carcinomas that spontaneously arise in female transgenic mice bearing the activated rat Her2 oncogene under transcriptional control of the mouse mammary tumor virus promoter-BALB-neuT (neuT) mice. We previously demonstrated that carcinoma progression in neuT mice can be prevented by DNA vaccination with RHuT, a plasmid coding for a chimeric rat/human Her2 protein. RHuT vaccination exerts an antitumor effect, mostly mediated by the induction of a strong anti-rat Her2 antibody response. IgG induced by RHuT vaccine mainly acts by blocking Her2 signaling, thus impairing cell cycle progression and inducing apoptosis of cancer cells, but other indirect effector mechanisms could be involved in the antibody-mediated protection. The recruitment of cells with perforin-dependent cytotoxic activity, able to perform antibody-dependent cellular cytotoxicity, has already been investigated. Less is known about the role of the complement system in sustaining antitumor response through complement-dependent cytotoxicity and cellular cytotoxicity in vaccinated mice. This work highlights that the weight of such mechanisms in RHuT-induced cancer protection is different in transplantable versus autochthonous Her2+ tumor models. These results may shed new light on the effector mechanisms involved in antibody-dependent anti-cancer responses, which might be exploited to ameliorate the therapy of Her2+ breast cancer.
2022
Inglese
ELETTRONICO
10
2
230
ADCC; Anti-Her2 antibodies; CDC; CDCC; Chimeric Her2 vaccine; Her2; Mammary cancer
https://www.mdpi.com/2227-9059/10/2/230
no
14
info:eu-repo/semantics/article
262
Macagno, M.; Bandini, S.; Bolli, E.; Bello, A.; Riccardo, F.; Barutello, G.; Merighi, I. F.; Forni, G.; Lamolinara, A.; Del Pizzo, F.; Iezzi, M.; Cava...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
open
File in questo prodotto:
File Dimensione Formato  
biomedicines-10-00230 role of adcc cdc cdcc.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/767731
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact