This paper focuses on the authigenic mineralization processes acting on "Tufo Rosso a Scorie Nere" (TRS), i.e. one of the main pyroclastic units of the Vico stratovolcano (Latium, Italy). The pyroclastic deposits appear in general massive and made of "black vitreous vesiculated juvenile scoriae", immersed in an ashy matrix lithified after zeolitization processes. The main minerals are chabazite and phillipsite, and the zeolitic content is locally variable, reaching 68%wt. Zeolites grow replacing both amorphous fraction and pre-existing phases, occurring inside both matrix and scoriae. Concerning scoriae, zeolitization moves from the rim to the core of the scoriaceous fragment as a function of (a) temperature of the fluids and (b) permeability (primary or secondary). Composition of parental fresh glass and that of zeolitized rocks is compatible with trachyte chemistry, lightly undersaturated in SiO2, and the alteration processes modified the parental rock chemical features. Zeolites genesis is ascribed to a "geoautoclave-like system", and zeolites display a Si=Al ratio similar to that of the parental glasses. TRS presents promising mineralogical characteristics as supplementary cementitious material in the production of mixed cements.

A case study of zeolitization process: "Tufo Rosso a Scorie Nere" (Vico volcano, Italy): Inferences for a general model

Novembre, Daniela
;
2021-01-01

Abstract

This paper focuses on the authigenic mineralization processes acting on "Tufo Rosso a Scorie Nere" (TRS), i.e. one of the main pyroclastic units of the Vico stratovolcano (Latium, Italy). The pyroclastic deposits appear in general massive and made of "black vitreous vesiculated juvenile scoriae", immersed in an ashy matrix lithified after zeolitization processes. The main minerals are chabazite and phillipsite, and the zeolitic content is locally variable, reaching 68%wt. Zeolites grow replacing both amorphous fraction and pre-existing phases, occurring inside both matrix and scoriae. Concerning scoriae, zeolitization moves from the rim to the core of the scoriaceous fragment as a function of (a) temperature of the fluids and (b) permeability (primary or secondary). Composition of parental fresh glass and that of zeolitized rocks is compatible with trachyte chemistry, lightly undersaturated in SiO2, and the alteration processes modified the parental rock chemical features. Zeolites genesis is ascribed to a "geoautoclave-like system", and zeolites display a Si=Al ratio similar to that of the parental glasses. TRS presents promising mineralogical characteristics as supplementary cementitious material in the production of mixed cements.
File in questo prodotto:
File Dimensione Formato  
ejm-33-315-2021.pdf

accesso aperto

Descrizione: Research Article
Tipologia: PDF editoriale
Dimensione 7.37 MB
Formato Adobe PDF
7.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/769729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact