This paper explores the use of a new dissimilarity measure for clustering image databases with a special focus on dermoscopic images. It considers the area of the largest square sub-matrices approximately matching in the two images for computing their dissimilarity. A variant of the K-medoids approach is proposed using the new dissimilarity measure in the optimisation function. An experiment compares the proposed clustering approach with other six well-known methods in terms of F-Normalised Mutual Information, Adjusted Rand Index, Jaccard index, and purity, on a dermoscopic image database characterised by 12 skin diseases. The obtained results show that the new clustering approach is very promising in clustering dermoscopic image databases versus the other competing approaches, which is a valid support in speeding up the medical diagnosis process.

A new dissimilarity measure for clustering with application to dermoscopic images

Amelio A.
2019-01-01

Abstract

This paper explores the use of a new dissimilarity measure for clustering image databases with a special focus on dermoscopic images. It considers the area of the largest square sub-matrices approximately matching in the two images for computing their dissimilarity. A variant of the K-medoids approach is proposed using the new dissimilarity measure in the optimisation function. An experiment compares the proposed clustering approach with other six well-known methods in terms of F-Normalised Mutual Information, Adjusted Rand Index, Jaccard index, and purity, on a dermoscopic image database characterised by 12 skin diseases. The obtained results show that the new clustering approach is very promising in clustering dermoscopic image databases versus the other competing approaches, which is a valid support in speeding up the medical diagnosis process.
2019
978-1-5386-8161-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/770110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact