The paper explores the use of evolutionary techniques in dealing with the image segmentation problem. An image is modeled as a weighted undirected graph, where nodes correspond to pixels, and edges connect similar pixels. A genetic algorithm that uses a fitness function based on an extension of the normalized cut criterion is proposed. The algorithm employs the locus-based representation of individuals, which allows for the partitioning of images without setting the number of segments beforehand. A new concept of nearest neighbor that takes into account not only the spatial location of a pixel, but also the affinity with the other pixels contained in the neighborhood, is also defined. Experimental results show that our approach is able to segment images in a number of regions that conform well to human visual perception. The visual perceptiveness is substantiated by objective evaluation methods based on uniformity of pixels inside a region, and comparison with ground-truth segmentations available for part of the used test images.

An evolutionary approach for image segmentation

Amelio A.
;
2014-01-01

Abstract

The paper explores the use of evolutionary techniques in dealing with the image segmentation problem. An image is modeled as a weighted undirected graph, where nodes correspond to pixels, and edges connect similar pixels. A genetic algorithm that uses a fitness function based on an extension of the normalized cut criterion is proposed. The algorithm employs the locus-based representation of individuals, which allows for the partitioning of images without setting the number of segments beforehand. A new concept of nearest neighbor that takes into account not only the spatial location of a pixel, but also the affinity with the other pixels contained in the neighborhood, is also defined. Experimental results show that our approach is able to segment images in a number of regions that conform well to human visual perception. The visual perceptiveness is substantiated by objective evaluation methods based on uniformity of pixels inside a region, and comparison with ground-truth segmentations available for part of the used test images.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/770244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact