Muong Nong-type (MN) tektites are a layered type of tektite associated to the Australasian strewn field, the youngest (790 kyr) and largest on Earth. In some MN tektites, coesite is observed in association with relict quartz and silica glass within inclusions surrounded by a froth layer. The formation of coesite-bearing frothy inclusions is here investigated through a 3D textural multiscale analysis of the vesicles contained in a MN tektite sample, combined with compositional and spectroscopic data. The vesicle size distribution testifies to a post-shock decompression that induced melting and extensive vesiculation in the tektite melt. Compared to free vesicles, nucleated homogeneously in the tektite melt, froth vesicles nucleated heterogeneously on relict quartz surfaces at the margins of coesite-bearing inclusions. The rapid detachment of the froth vesicles and prompt reactivation of the nucleation site favoured the packing of vesicles and the formation of the froth structure. Vesicle relaxation time scales suggest that the vesiculation process lasted few seconds. The formation of the froth layer was instrumental for the preservation of coesite, promoting quenching of the inclusion core through the subtraction of heat during froth expansion, thereby physically insulating the inclusion until the final quench of the tektite melt

3D X-ray tomographic analysis reveals how coesite is preserved in Muong Nong-type tektites

Radica, Francesco;
2020-01-01

Abstract

Muong Nong-type (MN) tektites are a layered type of tektite associated to the Australasian strewn field, the youngest (790 kyr) and largest on Earth. In some MN tektites, coesite is observed in association with relict quartz and silica glass within inclusions surrounded by a froth layer. The formation of coesite-bearing frothy inclusions is here investigated through a 3D textural multiscale analysis of the vesicles contained in a MN tektite sample, combined with compositional and spectroscopic data. The vesicle size distribution testifies to a post-shock decompression that induced melting and extensive vesiculation in the tektite melt. Compared to free vesicles, nucleated homogeneously in the tektite melt, froth vesicles nucleated heterogeneously on relict quartz surfaces at the margins of coesite-bearing inclusions. The rapid detachment of the froth vesicles and prompt reactivation of the nucleation site favoured the packing of vesicles and the formation of the froth structure. Vesicle relaxation time scales suggest that the vesiculation process lasted few seconds. The formation of the froth layer was instrumental for the preservation of coesite, promoting quenching of the inclusion core through the subtraction of heat during froth expansion, thereby physically insulating the inclusion until the final quench of the tektite melt
2020
Inglese
STAMPA
10
1
13
Article number: 20608
https://www.nature.com/articles/s41598-020-76727-6
11
info:eu-repo/semantics/article
262
Masotta, Matteo; Peres, Stefano; Folco, Luigi; Mancini, Lucia; Rochette, Pierre; Glass, Billy P.; Campanale, Fabrizio; Gueninchault, Nicolas; Radica, ...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
reserved
File in questo prodotto:
File Dimensione Formato  
masotta tomographic 2020.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 4.6 MB
Formato Adobe PDF
4.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/770386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact