Low-cost and simple methods are constantly chased in order to produce less expensive lithium-ion batteries (LIBs) while possibly increasing the energy and power density as well as the volumetric capacity in order to boost a rapid decarbonization of the transport sector. Li alloys and tin-carbon composites are promising candidates as anode materials for LIBs both in terms of capacity and cycle life. In the present paper, electrospinning was employed in the preparation of Sn/SnOx@C composites, where tin and tin oxides were homogeneously dispersed in a carbonaceous matrix of carbon nanofibers. The resulting self-standing and light electrode showed a greatly enhanced performance compared to a conventional electrode based on the same starting materials that are simply mixed to obtain a slurry then deposited on a Cu foil. Fast kinetics were achieved with more than 90% of the reaction that resulted being surface-controlled, and stable capacities of about 300 mAh/g over 500 cycles were obtained at a current density of 0.5 A/g.
Self-Supported Fibrous Sn/SnO 2@C Nanocomposite as Superior Anode Material for Lithium-Ion Batteries
Bruni P.;Ferrari S.
;
2022-01-01
Abstract
Low-cost and simple methods are constantly chased in order to produce less expensive lithium-ion batteries (LIBs) while possibly increasing the energy and power density as well as the volumetric capacity in order to boost a rapid decarbonization of the transport sector. Li alloys and tin-carbon composites are promising candidates as anode materials for LIBs both in terms of capacity and cycle life. In the present paper, electrospinning was employed in the preparation of Sn/SnOx@C composites, where tin and tin oxides were homogeneously dispersed in a carbonaceous matrix of carbon nanofibers. The resulting self-standing and light electrode showed a greatly enhanced performance compared to a conventional electrode based on the same starting materials that are simply mixed to obtain a slurry then deposited on a Cu foil. Fast kinetics were achieved with more than 90% of the reaction that resulted being surface-controlled, and stable capacities of about 300 mAh/g over 500 cycles were obtained at a current density of 0.5 A/g.File | Dimensione | Formato | |
---|---|---|---|
materials-15-00919-v2.pdf
accesso aperto
Descrizione: Article
Tipologia:
PDF editoriale
Dimensione
3.14 MB
Formato
Adobe PDF
|
3.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.