We propose an alternative approach to "deep" learning that is based on computational ecologies of structurally diverse artificial neural networks, and on dynamic associative memory responses to stimuli. Rather than focusing on massive computation of many different examples of a single situation, we opt for model-based learning and adaptive flexibility. Cross-fertilization of learning processes across multiple domains is the fundamental feature of human intelligence that must inform "new" artificial intelligence.

Digging deeper on "deep" learning: A computational ecology approach

Sacco P.
2017-01-01

Abstract

We propose an alternative approach to "deep" learning that is based on computational ecologies of structurally diverse artificial neural networks, and on dynamic associative memory responses to stimuli. Rather than focusing on massive computation of many different examples of a single situation, we opt for model-based learning and adaptive flexibility. Cross-fertilization of learning processes across multiple domains is the fundamental feature of human intelligence that must inform "new" artificial intelligence.
File in questo prodotto:
File Dimensione Formato  
Behavioral and Brain Sciences 2017b.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/774005
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact