Due to its exceptional physical properties, such as high electronic conductivity, good thermal stability, excellent mechanical strength, and chemical versatility, graphene has sparked a lot of interest in the scientific community for various applications. It has therefore been employed as an antibacterial agent, in photothermal therapy (PTT) and biosensors, in gene delivery systems, and in tissue engineering for regenerative purposes. Since it was first discovered in 1947, different graphene derivatives have been synthetized from pristine graphene. The most adaptable derivate is graphene oxide (GO). Owing to different functional groups, the amphiphilic structure of GO can interact with cells and exogenous or endogenous growth/differentiation factors, allowing cell adhesion, growth, and differentiation. When GO is used as a coating for scaffolds and nanomaterials, it has been found to enhance bone, chondrogenic, cardiac, neuronal, and skin regeneration. This review focuses on the applications of graphene-based materials, in particular GO, as a coating for scaffolds in bone and chondrogenic tissue engineering and summarizes the most recent findings. Moreover, novel developments on the immunomodulatory properties of GO are reported.

Graphene-Oxide-Enriched Biomaterials: A Focus on Osteo and Chondroinductive Properties and Immunomodulation

Ricci A.
Primo
;
Cataldi A.;Zara S.;Gallorini M.
Ultimo
2022-01-01

Abstract

Due to its exceptional physical properties, such as high electronic conductivity, good thermal stability, excellent mechanical strength, and chemical versatility, graphene has sparked a lot of interest in the scientific community for various applications. It has therefore been employed as an antibacterial agent, in photothermal therapy (PTT) and biosensors, in gene delivery systems, and in tissue engineering for regenerative purposes. Since it was first discovered in 1947, different graphene derivatives have been synthetized from pristine graphene. The most adaptable derivate is graphene oxide (GO). Owing to different functional groups, the amphiphilic structure of GO can interact with cells and exogenous or endogenous growth/differentiation factors, allowing cell adhesion, growth, and differentiation. When GO is used as a coating for scaffolds and nanomaterials, it has been found to enhance bone, chondrogenic, cardiac, neuronal, and skin regeneration. This review focuses on the applications of graphene-based materials, in particular GO, as a coating for scaffolds in bone and chondrogenic tissue engineering and summarizes the most recent findings. Moreover, novel developments on the immunomodulatory properties of GO are reported.
File in questo prodotto:
File Dimensione Formato  
materials-15-02229-v2.pdf

accesso aperto

Descrizione: Review
Tipologia: PDF editoriale
Dimensione 8.73 MB
Formato Adobe PDF
8.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/774471
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact