The usefulness of live attenuated virus vaccines has been limited by suboptimal immunogenicity, safety concerns or cumbersome manufacturing processes and techniques. Here we describe the generation of a live attenuated influenza A virus vaccine using proteolysis-targeting chimeric (PROTAC) technology to degrade viral proteins via the endogenous ubiquitin-proteasome system of host cells. We engineered the genome of influenza A viruses in stable cell lines engineered for virus production to introduce a conditionally removable proteasome-targeting domain, generating fully infective PROTAC viruses that were live attenuated by the host protein degradation machinery upon infection. In mouse and ferret models, PROTAC viruses were highly attenuated and able to elicit robust and broad humoral, mucosal and cellular immunity against homologous and heterologous virus challenges. PROTAC-mediated attenuation of viruses may be broadly applicable for generating live attenuated vaccines.

Generation of a live attenuated influenza A vaccine by proteolysis targeting

Chen, Li;Plebani, Roberto
Ultimo
2022-01-01

Abstract

The usefulness of live attenuated virus vaccines has been limited by suboptimal immunogenicity, safety concerns or cumbersome manufacturing processes and techniques. Here we describe the generation of a live attenuated influenza A virus vaccine using proteolysis-targeting chimeric (PROTAC) technology to degrade viral proteins via the endogenous ubiquitin-proteasome system of host cells. We engineered the genome of influenza A viruses in stable cell lines engineered for virus production to introduce a conditionally removable proteasome-targeting domain, generating fully infective PROTAC viruses that were live attenuated by the host protein degradation machinery upon infection. In mouse and ferret models, PROTAC viruses were highly attenuated and able to elicit robust and broad humoral, mucosal and cellular immunity against homologous and heterologous virus challenges. PROTAC-mediated attenuation of viruses may be broadly applicable for generating live attenuated vaccines.
File in questo prodotto:
File Dimensione Formato  
s41587-022-01381-4.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 10.41 MB
Formato Adobe PDF
10.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/793195
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact