: We present high-resolution mapping and surface faulting measurements along the Lost River fault (Idaho-USA), a normal fault activated in the 1983 (Mw 6.9) earthquake. The earthquake ruptured ~35 km of the fault with a maximum throw of ~3 m. From new 5 to 30 cm-pixel resolution topography collected by an Unmanned Aerial Vehicle, we produce the most comprehensive dataset of systematically measured vertical separations from ~37 km of fault length activated by the 1983 and prehistoric earthquakes. We provide Digital Elevation Models, orthophotographs, and three tables of: (i) 757 surface rupture traces, (ii) 1295 serial topographic profiles spaced 25 m apart that indicate rupture zone width and (iii) 2053 vertical separation measurements, each with additional textual and numerical fields. Our novel dataset supports advancing scientific knowledge about this fault system, refining scaling laws of intra-continental faults, comparing to other earthquakes to better understand faulting processes, and contributing to global probabilistic hazard approaches. Our methodology can be applied to other fault zones with high-resolution topographic data.

High-resolution surface faulting from the 1983 Idaho Lost River Fault Mw 6.9 earthquake and previous events

Bello, Simone
;
Ferrarini, Federica;Brozzetti, Francesco;Cirillo, Daniele;de Nardis, Rita;Lavecchia, Giusy
2021-01-01

Abstract

: We present high-resolution mapping and surface faulting measurements along the Lost River fault (Idaho-USA), a normal fault activated in the 1983 (Mw 6.9) earthquake. The earthquake ruptured ~35 km of the fault with a maximum throw of ~3 m. From new 5 to 30 cm-pixel resolution topography collected by an Unmanned Aerial Vehicle, we produce the most comprehensive dataset of systematically measured vertical separations from ~37 km of fault length activated by the 1983 and prehistoric earthquakes. We provide Digital Elevation Models, orthophotographs, and three tables of: (i) 757 surface rupture traces, (ii) 1295 serial topographic profiles spaced 25 m apart that indicate rupture zone width and (iii) 2053 vertical separation measurements, each with additional textual and numerical fields. Our novel dataset supports advancing scientific knowledge about this fault system, refining scaling laws of intra-continental faults, comparing to other earthquakes to better understand faulting processes, and contributing to global probabilistic hazard approaches. Our methodology can be applied to other fault zones with high-resolution topographic data.
File in questo prodotto:
File Dimensione Formato  
Bello_et_al_2021_scientific_data.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 5.6 MB
Formato Adobe PDF
5.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/798953
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact