In the maximum cover problem, we are given a collection of sets over a ground set of elements and a positive integer w, and we are asked to compute a collection of at most w sets whose union contains the maximum number of elements from the ground set. This is a fundamental combinatorial optimization problem with applications to resource allocation. We study the simplest APX-hard variant of the problem where all sets are of size at most 3 and we present a 6/5-approximation algorithm, improving the previously best known approximation guarantee. Our algorithm is based on the idea of first computing a large packing of disjoint sets of size 3 and then augmenting it by performing simple local improvements. © 2011 Springer Science+Business Media, LLC.
A 6/5-approximation algorithm for the maximum 3-cover problem
Monaco G.
2013-01-01
Abstract
In the maximum cover problem, we are given a collection of sets over a ground set of elements and a positive integer w, and we are asked to compute a collection of at most w sets whose union contains the maximum number of elements from the ground set. This is a fundamental combinatorial optimization problem with applications to resource allocation. We study the simplest APX-hard variant of the problem where all sets are of size at most 3 and we present a 6/5-approximation algorithm, improving the previously best known approximation guarantee. Our algorithm is based on the idea of first computing a large packing of disjoint sets of size 3 and then augmenting it by performing simple local improvements. © 2011 Springer Science+Business Media, LLC.File | Dimensione | Formato | |
---|---|---|---|
s10878-011-9417-z.pdf
Solo gestori archivio
Tipologia:
PDF editoriale
Dimensione
629.87 kB
Formato
Adobe PDF
|
629.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.