We consider an isothermal gas flowing through a straight pipe and study the effects of a two-way electronic valve on the flow. The valve is either open or closed according to the pressure gradient and is assumed to act without any time or reaction delay. We first give a notion of coupling solution for the corresponding Riemann problem; then, we highlight and investigate several important properties for the solver, such as coherence, consistence, continuity on initial data and invariant domains. In particular, the notion of coherence introduced here is new and related to commuting behaviors of valves. We provide explicit conditions on the initial data in order that each of these properties is satisfied. The modeling we propose can be easily extended to a very wide class of valves. (C) 2017 Elsevier Ltd. All rights reserved.
Coupling conditions for isothermal gas flow and applications to valves
Massimiliano D. Rosini
2018-01-01
Abstract
We consider an isothermal gas flowing through a straight pipe and study the effects of a two-way electronic valve on the flow. The valve is either open or closed according to the pressure gradient and is assumed to act without any time or reaction delay. We first give a notion of coupling solution for the corresponding Riemann problem; then, we highlight and investigate several important properties for the solver, such as coherence, consistence, continuity on initial data and invariant domains. In particular, the notion of coherence introduced here is new and related to commuting behaviors of valves. We provide explicit conditions on the initial data in order that each of these properties is satisfied. The modeling we propose can be easily extended to a very wide class of valves. (C) 2017 Elsevier Ltd. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1468121817301438-main.pdf
Solo gestori archivio
Tipologia:
PDF editoriale
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.