In this paper we consider a scalar parabolic equation on a star graph; the model is quite general but what we have in mind is the description of traffic flows at a crossroad. In particular, we do not necessarily require the continuity of the unknown function at the node of the graph and, moreover, the diffusivity can be degenerate. Our main result concerns a necessary and sufficient algebraic condition for the existence of traveling waves in the graph. We also study in great detail some examples corresponding to quadratic and logarithmic flux functions, for different diffusivities, to which our results apply.

Traveling waves for degenerate diffusive equations on networks

Massimiliano D. Rosini
2017-01-01

Abstract

In this paper we consider a scalar parabolic equation on a star graph; the model is quite general but what we have in mind is the description of traffic flows at a crossroad. In particular, we do not necessarily require the continuity of the unknown function at the node of the graph and, moreover, the diffusivity can be degenerate. Our main result concerns a necessary and sufficient algebraic condition for the existence of traveling waves in the graph. We also study in great detail some examples corresponding to quadratic and logarithmic flux functions, for different diffusivities, to which our results apply.
File in questo prodotto:
File Dimensione Formato  
10.3934_nhm.2017015.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 504.04 kB
Formato Adobe PDF
504.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/805425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact