The aim of this work is twofold. In a first, abstract part, it is shown how to derive an asymptotic equation for the amplitude of weakly nonlinear surface waves associated with neutrally stable undercompressive shocks. The amplitude equation obtained is a non-local generalization of Burgers' equation, for which an explicit stability condition is exhibited. This is an extension of earlier results by J. Hunter. The second part is devoted to 'ideal' subsonic phase boundaries, which were shown by the first author to be associated with linear surface waves. The amplitude equation for corresponding weakly non-linear surface waves is calculated explicitly and the stability condition is investigated analytically and numerically. (C) 2009 Elsevier Ltd. All rights reserved.

Weakly nonlinear surface waves and subsonic phase boundaries

Rosini, MD
2009-01-01

Abstract

The aim of this work is twofold. In a first, abstract part, it is shown how to derive an asymptotic equation for the amplitude of weakly nonlinear surface waves associated with neutrally stable undercompressive shocks. The amplitude equation obtained is a non-local generalization of Burgers' equation, for which an explicit stability condition is exhibited. This is an extension of earlier results by J. Hunter. The second part is devoted to 'ideal' subsonic phase boundaries, which were shown by the first author to be associated with linear surface waves. The amplitude equation for corresponding weakly non-linear surface waves is calculated explicitly and the stability condition is investigated analytically and numerically. (C) 2009 Elsevier Ltd. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0898122109000571-main.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/805440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact