The main result of this note is the existence of nonclassical solutions to the Cauchy problem for a conservation law modeling pedestrian flow. From the physical point of view, the main assumption of this model was recently experimentally confirmed in [D. Helbing, Ajohansson, H.Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys. Rev. E 75 (4) (2007) 046109]. Furthermore, the present model describes the fall in a door through-flow due to the rise of panic, as well as the Braess' paradox. From the analytical point of view, this model is an example of a conservation law in which nonclassical solutions have a physical motivation and a global existence result for the Cauchy problem, with large data, is available. (C) 2008 Elsevier Ltd. All rights reserved.
Existence of nonclassical solutions in a Pedestrian flow model
Massimiliano D. Rosini
2009-01-01
Abstract
The main result of this note is the existence of nonclassical solutions to the Cauchy problem for a conservation law modeling pedestrian flow. From the physical point of view, the main assumption of this model was recently experimentally confirmed in [D. Helbing, Ajohansson, H.Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys. Rev. E 75 (4) (2007) 046109]. Furthermore, the present model describes the fall in a door through-flow due to the rise of panic, as well as the Braess' paradox. From the analytical point of view, this model is an example of a conservation law in which nonclassical solutions have a physical motivation and a global existence result for the Cauchy problem, with large data, is available. (C) 2008 Elsevier Ltd. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1468121808001806-main.pdf
Solo gestori archivio
Tipologia:
PDF editoriale
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.