Liquid-liquid phase separation (LLPS) of atmospheric particles impacts a range of atmospheric processes. Driven by thermodynamics, LLPS occurs in mixed organic-inorganic particles when high inorganic salt concentrations exclude organic compounds, which develop into a separate phase. The effect of particle size on the thermodynamic and kinetic drivers of LLPS, however, remains incompletely understood. Here, the size dependence was studied for the separation relative humidity (SRH) of LLPS. Submicron organic-inorganic aerosol particles of ammonium sulfate mixed with 1,2,6-hexanetriol and polyethylene glycol (PEG) were studied. In a flow configuration, upstream size selection was coupled to a downstream fluorescence aerosol flow tube (F-AFT) at 293 ± 1 K. For both mixed particle types, the SRH values for submicron particle diameters of 260-410 nm agreed with previous measurements reported in the literature for supermicron particles. For smaller particles, the SRH values decreased by approximately 5% RH for diameters of 130-260 nm for PEG-sulfate particles and of 70-190 nm for hexanetriol-sulfate particles. From these observations, the nucleation rate in the hexanetriol-sulfate system was constrained, implying an activation barrier to nucleation of +1.4 to +2.0 × 10-19 J at 70% RH and 293 K. Quantifying the activation barrier is an approach for predicting size-dependent LLPS in the atmosphere.

Size Dependence of Liquid-Liquid Phase Separation by in Situ Study of Flowing Submicron Aerosol Particles

Eleonora Aruffo;
2023-01-01

Abstract

Liquid-liquid phase separation (LLPS) of atmospheric particles impacts a range of atmospheric processes. Driven by thermodynamics, LLPS occurs in mixed organic-inorganic particles when high inorganic salt concentrations exclude organic compounds, which develop into a separate phase. The effect of particle size on the thermodynamic and kinetic drivers of LLPS, however, remains incompletely understood. Here, the size dependence was studied for the separation relative humidity (SRH) of LLPS. Submicron organic-inorganic aerosol particles of ammonium sulfate mixed with 1,2,6-hexanetriol and polyethylene glycol (PEG) were studied. In a flow configuration, upstream size selection was coupled to a downstream fluorescence aerosol flow tube (F-AFT) at 293 ± 1 K. For both mixed particle types, the SRH values for submicron particle diameters of 260-410 nm agreed with previous measurements reported in the literature for supermicron particles. For smaller particles, the SRH values decreased by approximately 5% RH for diameters of 130-260 nm for PEG-sulfate particles and of 70-190 nm for hexanetriol-sulfate particles. From these observations, the nucleation rate in the hexanetriol-sulfate system was constrained, implying an activation barrier to nucleation of +1.4 to +2.0 × 10-19 J at 70% RH and 293 K. Quantifying the activation barrier is an approach for predicting size-dependent LLPS in the atmosphere.
File in questo prodotto:
File Dimensione Formato  
J Phys Chem A Ohno2023.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/806494
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact