Purpose Recently, new MRI systems working at magnetic field below 10 mT (Very and Ultra Low Field regime) have been developed, showing improved T1-contrast in projected 2D maps (i.e. images without slice selection). Moving from projected 2D to 3D maps is not trivial due to the low SNR of such devices. This work aimed to demonstrate the ability and the sensitivity of a VLF-MRI scanner operating at 8.9 mT in quantitatively obtaining 3D longitudinal relaxation rate (R1) maps and distinguishing between voxels intensities. We used phantoms consisting of vessels doped with different Gadolinium (Gd)-based Contrast Agent (CA) concentrations, providing a set of various R1 values. As CA, we used a commercial compound (MultiHance®, gadobenate dimeglumine) routinely used in clinical MRI. Methods 3D R1 maps and T1-weighted MR images were analysed to identify each vessel. R1 maps were further processed by an automatic clustering analysis to evaluate the sensitivity at the single-voxel level. Results obtained at 8.9 mT were compared with commercial scanners operating at 0.2 T, 1.5 T, and 3 T. Results VLF R1 maps offered a higher sensitivity in distinguishing the different CA concentrations and an improved contrast compared to higher fields. Moreover, the high sensitivity of 3D quantitative VLF-MRI allowed an effective clustering of the 3D map values, assessing their reliability at the single voxel level. Conversely, in all fields, T1-weighted images were less reliable, even at higher CA concentrations. Conclusion In summary, with few excitations and an isotropic voxel size of 3 mm, VLF-MRI 3D quantitative mapping showed a sensitivity better than 2.7 s-1 corresponding to a concentration difference of 0.17 mM of MultiHance in copper sulfate doped water, and improved contrast compared to higher fields. Based on these results, future studies should characterize R1 contrast at VLF, also with other CA, in the living tissues.

Analyzing the sensitivity of quantitative 3D MRI of longitudinal relaxation at very low field in Gd-doped phantoms

Danilo de Iure
Primo
;
Sara Spadone;Ingo Hilschenz;Massimo Caulo;Stefano Sensi;Cosimo Del Gratta
Penultimo
;
Stefania Della Penna
Ultimo
2023-01-01

Abstract

Purpose Recently, new MRI systems working at magnetic field below 10 mT (Very and Ultra Low Field regime) have been developed, showing improved T1-contrast in projected 2D maps (i.e. images without slice selection). Moving from projected 2D to 3D maps is not trivial due to the low SNR of such devices. This work aimed to demonstrate the ability and the sensitivity of a VLF-MRI scanner operating at 8.9 mT in quantitatively obtaining 3D longitudinal relaxation rate (R1) maps and distinguishing between voxels intensities. We used phantoms consisting of vessels doped with different Gadolinium (Gd)-based Contrast Agent (CA) concentrations, providing a set of various R1 values. As CA, we used a commercial compound (MultiHance®, gadobenate dimeglumine) routinely used in clinical MRI. Methods 3D R1 maps and T1-weighted MR images were analysed to identify each vessel. R1 maps were further processed by an automatic clustering analysis to evaluate the sensitivity at the single-voxel level. Results obtained at 8.9 mT were compared with commercial scanners operating at 0.2 T, 1.5 T, and 3 T. Results VLF R1 maps offered a higher sensitivity in distinguishing the different CA concentrations and an improved contrast compared to higher fields. Moreover, the high sensitivity of 3D quantitative VLF-MRI allowed an effective clustering of the 3D map values, assessing their reliability at the single voxel level. Conversely, in all fields, T1-weighted images were less reliable, even at higher CA concentrations. Conclusion In summary, with few excitations and an isotropic voxel size of 3 mm, VLF-MRI 3D quantitative mapping showed a sensitivity better than 2.7 s-1 corresponding to a concentration difference of 0.17 mM of MultiHance in copper sulfate doped water, and improved contrast compared to higher fields. Based on these results, future studies should characterize R1 contrast at VLF, also with other CA, in the living tissues.
2023
Inglese
ELETTRONICO
18
5
19
Article number e0285391
Contrast Media; Magnetic Resonance Imaging; Organometallic Compounds; Reproducibility of Results
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285391
no
9
info:eu-repo/semantics/article
262
DE IURE, Danilo; Conti, Allegra; Galante, Angelo; Spadone, Sara; Hilschenz, Ingo; Caulo, Massimo; Sensi, Stefano; DEL GRATTA, Cosimo; DELLA PENNA, Ste...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
open
   Oxide Nanoelectromechanical Systems for Ultrasensitive and Robust Sensing of Biomagnetic Fields
   OXiNEMS
   European Commission
   Horizon 2020 Framework Programme
   828784
File in questo prodotto:
File Dimensione Formato  
PlosOne_De Iure_2023.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/808691
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact