This work presents a literature survey of the available data regarding the thermal conductivity of refrigerants. About 31 pure refrigerants that contain 7127 data points are selected for the temperature range of 91.35–580.00 K, a pressure range of (0.000111-500) bar, and thermal conductivity range of (0.007–0.27) W m−1 K−1 containing liquid, vapour, and supercritical phases. Seven binary and three ternary mixtures are also collected both in liquid and vapour phases with an overall of 803 data points. Based on the similarity between the pressure-volume-temperature and Tλ (thermal conductivity) P diagrams, the thermal conductivity model based on Heyen equation of state has been developed for pure refrigerants and their mixtures. The genetic algorithm is used to determine the adjustable parameters of the model. The calculation results prove that this proposed model can reproduce and predict thermal conductivity of refrigerants with good accuracy (overall AAD = 6.85% for pure compounds, AAD = 6.14% for binary mixtures and AAD = 9.32% for ternary mixtures).

Modelling investigation on the thermal conductivity of pure liquid, vapour, and supercritical refrigerants and their mixtures by using Heyen EOS

Pierantozzi M.
2018-01-01

Abstract

This work presents a literature survey of the available data regarding the thermal conductivity of refrigerants. About 31 pure refrigerants that contain 7127 data points are selected for the temperature range of 91.35–580.00 K, a pressure range of (0.000111-500) bar, and thermal conductivity range of (0.007–0.27) W m−1 K−1 containing liquid, vapour, and supercritical phases. Seven binary and three ternary mixtures are also collected both in liquid and vapour phases with an overall of 803 data points. Based on the similarity between the pressure-volume-temperature and Tλ (thermal conductivity) P diagrams, the thermal conductivity model based on Heyen equation of state has been developed for pure refrigerants and their mixtures. The genetic algorithm is used to determine the adjustable parameters of the model. The calculation results prove that this proposed model can reproduce and predict thermal conductivity of refrigerants with good accuracy (overall AAD = 6.85% for pure compounds, AAD = 6.14% for binary mixtures and AAD = 9.32% for ternary mixtures).
File in questo prodotto:
File Dimensione Formato  
2018_Modelling investigation on the thermal conductivity of pure liquid vapour and supercritical refrigerants and their mixtures by using Heyen EOS.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/812753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact