Poly(methyl methacrylate) (PMMA) is characterized by high CO2 capture yield under mild pressures and temperatures. A morphological modification of powdery amorphous PMMA (pPMMA) is carried out by electrospinning to increase the surface/volume ratio of the resulting electrospun PMMAs (ePMMAs). This modification improves the kinetics and the capture yields. The rate constants observed for ePMMAs are two to three times higher than those for pPMMA, reaching 90% saturation values within 5–7 s. The amount of sorbed CO2 is up to eleven times higher for ePMMAs at 1 °C, and the highest difference in captured CO2 amount is observed at the lowest tested pressure of 1 MPa. The operating life of the ePMMAs shows a 5% yield loss after ten consecutive runs, indicating good durability. Spent electrospun PMMAs after several cycles of CO2 sorption-desorption can be regenerated by melting and again electrospinning the molten mass, resulting in a CO2 capture performance that is undistinguishable from that observed with fresh ePMMA. Scanning electron and atomic force microscopies show a reduction in surface roughness after gas exposure, possibly due to the plasticization effect of CO2. This study shows the potential of electrospun PMMAs as solid sorbents for carbon capture from natural gas or pre-combustion and oxyfuel combustion processes.

Enhanced CO2 Capture by Sorption on Electrospun Poly (Methyl Methacrylate)

Ciulla M.
Primo
;
Canale V.;Wolicki R. D.;Pilato S.;Bruni P.;Ferrari S.;Siani G.;Fontana A.;Di Profio P.
2023-01-01

Abstract

Poly(methyl methacrylate) (PMMA) is characterized by high CO2 capture yield under mild pressures and temperatures. A morphological modification of powdery amorphous PMMA (pPMMA) is carried out by electrospinning to increase the surface/volume ratio of the resulting electrospun PMMAs (ePMMAs). This modification improves the kinetics and the capture yields. The rate constants observed for ePMMAs are two to three times higher than those for pPMMA, reaching 90% saturation values within 5–7 s. The amount of sorbed CO2 is up to eleven times higher for ePMMAs at 1 °C, and the highest difference in captured CO2 amount is observed at the lowest tested pressure of 1 MPa. The operating life of the ePMMAs shows a 5% yield loss after ten consecutive runs, indicating good durability. Spent electrospun PMMAs after several cycles of CO2 sorption-desorption can be regenerated by melting and again electrospinning the molten mass, resulting in a CO2 capture performance that is undistinguishable from that observed with fresh ePMMA. Scanning electron and atomic force microscopies show a reduction in surface roughness after gas exposure, possibly due to the plasticization effect of CO2. This study shows the potential of electrospun PMMAs as solid sorbents for carbon capture from natural gas or pre-combustion and oxyfuel combustion processes.
File in questo prodotto:
File Dimensione Formato  
2023_Separations_10_00505.pdf

accesso aperto

Dimensione 6.09 MB
Formato Adobe PDF
6.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/816914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact