Background: Cancer is still among the leading causes of death all over the world. Improving chemotherapy and minimizing associated toxicities are major unmet medical needs. Recently, we provided a preliminary preclinical evaluation of a human ferritin (HFt)-based drug carrier (The-0504) that selectively delivers the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors. The-0504 has so far been evaluated on four different human tumor xenotransplant models (breast, colorectal, pancreatic and liver cancers). Methods: Herein, we extend our studies, by: (a) testing DNA damage in vitro, (b) treating eight additional tumor xenograft models in vivo with The-0504; (c) performing pharmacokinetic (PK) studies in rats; and (d) evaluating The-0504 anti-tumor xenotransplant efficacy by optimizing its administration schedule based on PK considerations. Results: Immunofluorescence demonstrated that The-0504 induces foci expressing the DNA double-strand break marker γH2AX. Expression increases up to 4-fold and is more persistent as compared to free Genz-644282. In vivo studies confirmed a remarkable anti-tumor activity of The-0504, resulting in tumor eradication in most murine xenograft models, regardless of embryological origin (e.g. epithelial, mesenchymal or neuroendocrine), and molecular subtypes. PK studies demonstrated a long persistence of The-0504 in rat serum (half-life of about 40 h as compared to 15 h of the free drug), with a 400-fold increase in peak concentrations as compared to the free drug. On this basis, we reduced The-0504 administration frequency from twice to once per week, with no appreciable loss in therapeutic efficacy in mice. Conclusion: The results presented here confirm that The-0504 is highly active against several human tumor xenotransplants, even when administered less frequently than previously reported. The-0504 may be a good candidate for further clinical development in a tumor histotype-agnostic setting.

Widespread in vivo efficacy of The-0504: A conditionally-activatable nanoferritin for tumor-agnostic targeting of CD71-expressing cancers

Sala, Gianluca
;
Bibbo, Sandra;
2023-01-01

Abstract

Background: Cancer is still among the leading causes of death all over the world. Improving chemotherapy and minimizing associated toxicities are major unmet medical needs. Recently, we provided a preliminary preclinical evaluation of a human ferritin (HFt)-based drug carrier (The-0504) that selectively delivers the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors. The-0504 has so far been evaluated on four different human tumor xenotransplant models (breast, colorectal, pancreatic and liver cancers). Methods: Herein, we extend our studies, by: (a) testing DNA damage in vitro, (b) treating eight additional tumor xenograft models in vivo with The-0504; (c) performing pharmacokinetic (PK) studies in rats; and (d) evaluating The-0504 anti-tumor xenotransplant efficacy by optimizing its administration schedule based on PK considerations. Results: Immunofluorescence demonstrated that The-0504 induces foci expressing the DNA double-strand break marker γH2AX. Expression increases up to 4-fold and is more persistent as compared to free Genz-644282. In vivo studies confirmed a remarkable anti-tumor activity of The-0504, resulting in tumor eradication in most murine xenograft models, regardless of embryological origin (e.g. epithelial, mesenchymal or neuroendocrine), and molecular subtypes. PK studies demonstrated a long persistence of The-0504 in rat serum (half-life of about 40 h as compared to 15 h of the free drug), with a 400-fold increase in peak concentrations as compared to the free drug. On this basis, we reduced The-0504 administration frequency from twice to once per week, with no appreciable loss in therapeutic efficacy in mice. Conclusion: The results presented here confirm that The-0504 is highly active against several human tumor xenotransplants, even when administered less frequently than previously reported. The-0504 may be a good candidate for further clinical development in a tumor histotype-agnostic setting.
File in questo prodotto:
File Dimensione Formato  
Heliyon 2023 Fracasso.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/817711
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact