The HYPerspectral Stereo Observing System (HYPSOS) is a novel remote sensing pushbroom instrument able to give simultaneously both 3D spatial and spectral information of the observed features. HYPSOS is a very compact instrument, which makes it attractive for both possible planetary observation and for its use on a nanosat, e.g. for civilian applications. This instrument collects light from two different perspectives, as a classical pushbroom stereocamera, which allows to realize the tridimensional model of the observed surface, and then to extract the spectral information from each resolved element, thus obtaining a full 4-dimensional hypercube dataset. To demonstrate the actual performance of this novel type of instrument, we are presently realizing a HYPSOS prototype, that is an instrument breadboard to be tested in a laboratory environment. For checking its performance, we setup an optical facility representative of a possible flight configuration. In this paper we provide a description of HYPSOS concept, of its optomechanical design and of the ground support equipment used to characterize the instrument. An update on the present status of the experiment is finally given.
Laboratory characterization of HYPSOS, a novel 4D remote sensing instrument
Marinangeli L.;Tangari A. C.;
2021-01-01
Abstract
The HYPerspectral Stereo Observing System (HYPSOS) is a novel remote sensing pushbroom instrument able to give simultaneously both 3D spatial and spectral information of the observed features. HYPSOS is a very compact instrument, which makes it attractive for both possible planetary observation and for its use on a nanosat, e.g. for civilian applications. This instrument collects light from two different perspectives, as a classical pushbroom stereocamera, which allows to realize the tridimensional model of the observed surface, and then to extract the spectral information from each resolved element, thus obtaining a full 4-dimensional hypercube dataset. To demonstrate the actual performance of this novel type of instrument, we are presently realizing a HYPSOS prototype, that is an instrument breadboard to be tested in a laboratory environment. For checking its performance, we setup an optical facility representative of a possible flight configuration. In this paper we provide a description of HYPSOS concept, of its optomechanical design and of the ground support equipment used to characterize the instrument. An update on the present status of the experiment is finally given.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.