Background and aims: Sodium-glucose cotransporter 2 (SGLT2) inhibitors have beneficial effects on heart failure and cardiovascular mortality in diabetic and nondiabetic patients, with unclear mechanisms. Autophagy is a cardioprotective mechanism under acute stress conditions, but excessive autophagy accelerates myocardial cell death leading to autosis. We evaluated the protective role of empagliflozin (EMPA) against cardiac injury in murine diabetic cardiomyopathy. Methods and results: Male mice, rendered diabetics by one single intraperitoneal injection of streptozotocin and treated with EMPA (30 mg/kg/day) had fewer apoptotic cells (4.9 ± 2.1 vs 1 ± 0.5 TUNEL-positive cells %, p < 0.05), less senescence (10.1 ± 2 vs 7.9 ± 1.2 β-gal positivity/tissue area, p < 0.05), fibrosis (0.2 ± 0.05 vs 0.15 ± 0.06, p < 0.05 fibrotic area/tissue area), autophagy (7.9 ± 0.05 vs 2.3 ± 0.6 fluorescence intensity/total area, p < 0.01), and connexin (Cx)-43 lateralization compared with diabetic mice. Proteomic analysis showed a downregulation of the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway and upstream activation of sirtuins in the heart of diabetic mice treated with EMPA compared with diabetic mice. Because sirtuin activation leads to modulation of cardiomyogenic transcription factors, we analyzed the DNA binding activity to serum response elements (SRE) of serum response factor (SRF) by electromobility shift assay. Compared with diabetic mice (0.5 ± 0.01 densitometric units, DU), nondiabetic mice treated with EMPA (2.2 ± 0.01 DU, p < 0.01) and diabetic mice treated with EMPA (2.0 ± 0.1 DU, p < 0.01) significantly increased SRF binding activity to SRE, paralleled by increased cardiac actin expression (4.1 ± 0.1 vs 2.2 ± 0.01 target protein/β-actin ratio, p < 0.01). EMPA significantly reversed cardiac dysfunction on echocardiography in diabetic mice and inhibited excessive autophagy in high-glucose-treated cardiomyocytes by inhibiting the autophagy inducer GSK3β, leading to reactivation of cardiomyogenic transcription factors. Conclusions: Taken together, our results describe a novel paradigm in which EMPA inhibits hyperactivation of autophagy through the AMPK/GSK3β signaling pathway in the context of diabetes.

Empagliflozin inhibits excessive autophagy through the AMPK/GSK3β signaling pathway in diabetic cardiomyopathy

Madonna, Rosalinda;Cufaro, Maria Concetta;Pieragostino, Damiana;Del Boccio, Piero;De Caterina, Raffaele
2023-01-01

Abstract

Background and aims: Sodium-glucose cotransporter 2 (SGLT2) inhibitors have beneficial effects on heart failure and cardiovascular mortality in diabetic and nondiabetic patients, with unclear mechanisms. Autophagy is a cardioprotective mechanism under acute stress conditions, but excessive autophagy accelerates myocardial cell death leading to autosis. We evaluated the protective role of empagliflozin (EMPA) against cardiac injury in murine diabetic cardiomyopathy. Methods and results: Male mice, rendered diabetics by one single intraperitoneal injection of streptozotocin and treated with EMPA (30 mg/kg/day) had fewer apoptotic cells (4.9 ± 2.1 vs 1 ± 0.5 TUNEL-positive cells %, p < 0.05), less senescence (10.1 ± 2 vs 7.9 ± 1.2 β-gal positivity/tissue area, p < 0.05), fibrosis (0.2 ± 0.05 vs 0.15 ± 0.06, p < 0.05 fibrotic area/tissue area), autophagy (7.9 ± 0.05 vs 2.3 ± 0.6 fluorescence intensity/total area, p < 0.01), and connexin (Cx)-43 lateralization compared with diabetic mice. Proteomic analysis showed a downregulation of the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway and upstream activation of sirtuins in the heart of diabetic mice treated with EMPA compared with diabetic mice. Because sirtuin activation leads to modulation of cardiomyogenic transcription factors, we analyzed the DNA binding activity to serum response elements (SRE) of serum response factor (SRF) by electromobility shift assay. Compared with diabetic mice (0.5 ± 0.01 densitometric units, DU), nondiabetic mice treated with EMPA (2.2 ± 0.01 DU, p < 0.01) and diabetic mice treated with EMPA (2.0 ± 0.1 DU, p < 0.01) significantly increased SRF binding activity to SRE, paralleled by increased cardiac actin expression (4.1 ± 0.1 vs 2.2 ± 0.01 target protein/β-actin ratio, p < 0.01). EMPA significantly reversed cardiac dysfunction on echocardiography in diabetic mice and inhibited excessive autophagy in high-glucose-treated cardiomyocytes by inhibiting the autophagy inducer GSK3β, leading to reactivation of cardiomyogenic transcription factors. Conclusions: Taken together, our results describe a novel paradigm in which EMPA inhibits hyperactivation of autophagy through the AMPK/GSK3β signaling pathway in the context of diabetes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/821587
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact