Nowadays, Western diets and lifestyle lead to an increasing occurrence of chronic gut inflammation that represents an emerging health concern with still a lack of successful therapies. Fermented foods, and their associated lactic acid bacteria, have recently regained popularity for their probiotic potential including the maintenance of gut homeostasis by modulating the immune and inflammatory response. Our study aims to investigate the crosstalk between the food-borne strain Lactiplantibacillus plantarum C9O4 and intestinal epithelial cells in an in vitro inflammation model. Cytokines profile shows the ability of C9O4 to significantly reduce levels of IL-2, IL-5, IL-6, and IFN-γ. Proteomic functional analysis reveals an immunoregulatory role of C9O4, able to revert the detrimental effects of IFN-γ through the JAK/STAT pathway in inflamed intestinal cells. These results suggest a promising therapeutic role of fermented food-associated microbes for the management of gastrointestinal inflammatory diseases. Data are available via ProteomeXchange with identifier PXD042175.

A proteomic insight reveals the role of food-associated Lactiplantibacillus plantarum C9O4 in reverting intestinal inflammation

Cufaro, Maria Concetta
Co-primo
;
Di Marco, Federica;Del Boccio, Piero
Penultimo
;
2023-01-01

Abstract

Nowadays, Western diets and lifestyle lead to an increasing occurrence of chronic gut inflammation that represents an emerging health concern with still a lack of successful therapies. Fermented foods, and their associated lactic acid bacteria, have recently regained popularity for their probiotic potential including the maintenance of gut homeostasis by modulating the immune and inflammatory response. Our study aims to investigate the crosstalk between the food-borne strain Lactiplantibacillus plantarum C9O4 and intestinal epithelial cells in an in vitro inflammation model. Cytokines profile shows the ability of C9O4 to significantly reduce levels of IL-2, IL-5, IL-6, and IFN-γ. Proteomic functional analysis reveals an immunoregulatory role of C9O4, able to revert the detrimental effects of IFN-γ through the JAK/STAT pathway in inflamed intestinal cells. These results suggest a promising therapeutic role of fermented food-associated microbes for the management of gastrointestinal inflammatory diseases. Data are available via ProteomeXchange with identifier PXD042175.
File in questo prodotto:
File Dimensione Formato  
2023_Paper Lpb Intestinal Cell_Cufaro et al_iSCIENCE.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 4.85 MB
Formato Adobe PDF
4.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/821731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact