Let d and m be two distinct squarefree integers and (9K the ring of integers v/ of the quadratic field K = Q( d). Denote by HK(a, m) a quaternion algebra over K, where a E (9K. In this paper we give necessary and sufficient conditions for HK(a, m) to split over K for some values of a, and we obtain a complete characterization of division quaternion algebras HK(a, m) over K whenever a and m are two distinct positive prime integers. Examples are given involving prime Fibonacci numbers.

On quaternion algebras that split over specific quadratic number fields

Acciaro, V;
2022-01-01

Abstract

Let d and m be two distinct squarefree integers and (9K the ring of integers v/ of the quadratic field K = Q( d). Denote by HK(a, m) a quaternion algebra over K, where a E (9K. In this paper we give necessary and sufficient conditions for HK(a, m) to split over K for some values of a, and we obtain a complete characterization of division quaternion algebras HK(a, m) over K whenever a and m are two distinct positive prime integers. Examples are given involving prime Fibonacci numbers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/823451
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact