Purpose: Guided bone regeneration is a widely used technique for the treatment of atrophic arches. A broad range of devices have been employed to achieve bone regeneration. The present study aimed to investigate the clinical and histological findings for a new titanium CAD/CAM device for guided bone regeneration, namely semi-occlusive titanium mesh. Materials and methods: Nine partially edentulous patients with vertical and/or horizontal bone defects underwent a guided bone regeneration procedure to enable implant placement. The device used as a barrier was a semi-occlusive CAD/CAM titanium mesh with a laser sintered microperforated scaffold with a pore size of 0.3 mm, grafted with autogenous and xenogeneic bone in a ratio of 80:20. Eight months after guided bone regeneration, surgical and healing complications were evaluated and histological analyses of the regenerated bone were performed. Results: A total of 9 patients with 11 treated sites were enrolled. Two healing complications were recorded: one late exposure of the device and one early infection (18.18%). At 8 months, well-structured new regenerated trabecular bone with marrow spaces was mostly present. The percentage of newly formed bone was 30.37% ± 4.64%, that of marrow spaces was 56.43% ± 4.62%, that of residual xenogeneic material was 12.16% ± 0.49% and that of residual autogenous bone chips was 1.02% ± 0.14%. Conclusion: Within the limitations of the present study, the results show that semi-occlusive titanium mesh could be used for vertical and horizontal ridge augmentation. Nevertheless, further follow-ups and clinical and histological studies are required.

Semi-occlusive CAD/CAM titanium mesh for guided bone regeneration: Preliminary clinical and histological results

Iezzi, Giovanna;
2023-01-01

Abstract

Purpose: Guided bone regeneration is a widely used technique for the treatment of atrophic arches. A broad range of devices have been employed to achieve bone regeneration. The present study aimed to investigate the clinical and histological findings for a new titanium CAD/CAM device for guided bone regeneration, namely semi-occlusive titanium mesh. Materials and methods: Nine partially edentulous patients with vertical and/or horizontal bone defects underwent a guided bone regeneration procedure to enable implant placement. The device used as a barrier was a semi-occlusive CAD/CAM titanium mesh with a laser sintered microperforated scaffold with a pore size of 0.3 mm, grafted with autogenous and xenogeneic bone in a ratio of 80:20. Eight months after guided bone regeneration, surgical and healing complications were evaluated and histological analyses of the regenerated bone were performed. Results: A total of 9 patients with 11 treated sites were enrolled. Two healing complications were recorded: one late exposure of the device and one early infection (18.18%). At 8 months, well-structured new regenerated trabecular bone with marrow spaces was mostly present. The percentage of newly formed bone was 30.37% ± 4.64%, that of marrow spaces was 56.43% ± 4.62%, that of residual xenogeneic material was 12.16% ± 0.49% and that of residual autogenous bone chips was 1.02% ± 0.14%. Conclusion: Within the limitations of the present study, the results show that semi-occlusive titanium mesh could be used for vertical and horizontal ridge augmentation. Nevertheless, further follow-ups and clinical and histological studies are required.
File in questo prodotto:
File Dimensione Formato  
2023 - Semi-occlusive meshes - Simion_IJOI.docx

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 2.07 MB
Formato Microsoft Word XML
2.07 MB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/828372
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact