Purpose of Review Application of deep learning (DL) is growing in the last years, especially in the healthcare domain. This review presents the current state of DL techniques applied to electronic health record structured data, physiological signals, and imaging modalities for the management of heart failure (HF), focusing in particular on diagnosis, prognosis, and re-hospitalization risk, to explore the level of maturity of DL in this field. Recent Findings DL allows a better integration of different data sources to distillate more accurate outcomes in HF patients, thus resulting in better performance when compared to conventional evaluation methods. While applications in image and signal processing for HF diagnosis have reached very high performance, the application of DL to electronic health records and its multisource data for prediction could still be improved, despite the already promising results. Embracing the current big data era, DL can improve performance compared to conventional techniques and machine learning approaches. DL algorithms have potential to provide more efficient care and improve outcomes of HF patients, although further investigations are needed to overcome current limitations, including results generalizability and transparency and explicability of the evidences supporting the process.
Decision Support Systems in HF based on Deep Learning Technologies
Moccia, Sara;
2022-01-01
Abstract
Purpose of Review Application of deep learning (DL) is growing in the last years, especially in the healthcare domain. This review presents the current state of DL techniques applied to electronic health record structured data, physiological signals, and imaging modalities for the management of heart failure (HF), focusing in particular on diagnosis, prognosis, and re-hospitalization risk, to explore the level of maturity of DL in this field. Recent Findings DL allows a better integration of different data sources to distillate more accurate outcomes in HF patients, thus resulting in better performance when compared to conventional evaluation methods. While applications in image and signal processing for HF diagnosis have reached very high performance, the application of DL to electronic health records and its multisource data for prediction could still be improved, despite the already promising results. Embracing the current big data era, DL can improve performance compared to conventional techniques and machine learning approaches. DL algorithms have potential to provide more efficient care and improve outcomes of HF patients, although further investigations are needed to overcome current limitations, including results generalizability and transparency and explicability of the evidences supporting the process.File | Dimensione | Formato | |
---|---|---|---|
s11897-022-00540-7.pdf
Solo gestori archivio
Tipologia:
PDF editoriale
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.