The accurate prediction of heavy precipitation in convective environments is crucial because such events, often occurring in Italy during the summer and fall seasons, can be a threat for people and properties. In this paper, we analyse the impact of satellite-derived surface-rainfall-rate data assimilation on the Weather Research and Forecasting (WRF) model’s precipitation prediction, considering 15 days in summer 2022 and 17 days in fall 2022, where moderate to intense precipitation was observed over Italy. A 3DVar realised at CNR-ISAC (National Research Council of Italy, Institute of Atmospheric Sciences and Climate) is used to assimilate two different satellite-derived rain rate products, both exploiting geostationary (GEO), infrared (IR), and low-Earth-orbit (LEO) microwave (MW) measurements: One is based on an artificial neural network (NN), and the other one is the operational P-IN-SEVIRI-PMW product (H60), delivered in near-real time by the EUMETSAT HSAF (Satellite Application Facility in Support of Operational Hydrology and Water Management). The forecast is verified in two periods: the hours from 1 to 4 (1–4 h phase) and the hours from 3 to 6 (3–6 h phase) after the assimilation. The results show that the rain rate assimilation improves the precipitation forecast in both seasons and for both forecast phases, even if the improvement in the 3–6 h phase is found mainly in summer. The assimilation of H60 produces a high number of false alarms, which has a negative impact on the forecast, especially for intense events (30 mm/3 h). The assimilation of the NN rain rate gives more balanced predictions, improving the control forecast without significantly increasing false alarms.

Data Assimilation of Satellite-Derived Rain Rates Estimated by Neural Network in Convective Environments: A Study over Italy

Mascitelli, Alessandra;
2024-01-01

Abstract

The accurate prediction of heavy precipitation in convective environments is crucial because such events, often occurring in Italy during the summer and fall seasons, can be a threat for people and properties. In this paper, we analyse the impact of satellite-derived surface-rainfall-rate data assimilation on the Weather Research and Forecasting (WRF) model’s precipitation prediction, considering 15 days in summer 2022 and 17 days in fall 2022, where moderate to intense precipitation was observed over Italy. A 3DVar realised at CNR-ISAC (National Research Council of Italy, Institute of Atmospheric Sciences and Climate) is used to assimilate two different satellite-derived rain rate products, both exploiting geostationary (GEO), infrared (IR), and low-Earth-orbit (LEO) microwave (MW) measurements: One is based on an artificial neural network (NN), and the other one is the operational P-IN-SEVIRI-PMW product (H60), delivered in near-real time by the EUMETSAT HSAF (Satellite Application Facility in Support of Operational Hydrology and Water Management). The forecast is verified in two periods: the hours from 1 to 4 (1–4 h phase) and the hours from 3 to 6 (3–6 h phase) after the assimilation. The results show that the rain rate assimilation improves the precipitation forecast in both seasons and for both forecast phases, even if the improvement in the 3–6 h phase is found mainly in summer. The assimilation of H60 produces a high number of false alarms, which has a negative impact on the forecast, especially for intense events (30 mm/3 h). The assimilation of the NN rain rate gives more balanced predictions, improving the control forecast without significantly increasing false alarms.
File in questo prodotto:
File Dimensione Formato  
Torcasio_et_al_2024.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/830591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact