: Exposomics is an ever-expanding field which captures the cumulative exposures to chemical, biological, physical, lifestyle, and social factors associated with biological responses. Since skeletal muscle is currently considered as the largest secretory organ and shows substantial plasticity over the life course, this reviews addresses the topic of exposome and skeletal muscle by reviewing the state-of-the-art evidence and the most intriguing perspectives. Muscle stem cells react to stressors via phosphorylated eukaryotic initiation factor 2α and tuberous sclerosis 1, and are sensible to hormetic factors via sirtuin 1. Microplastics can delay muscle regeneration via p38 mitogen-activated protein kinases and induce transdifferentiation to adipocytes via nuclear factor kappa B. Acrolein can inhibit myogenic differentiation and disrupt redox system. Heavy metals have been associated with reduced muscle strength in children. The deep study of pollutants and biological features can shed new light on neuromuscular pathophysiology. The analysis of a time-varying and dynamic exposome risk score from a panel of exposure and phenotypes of interest is promising. The systematization of hormetic factors and the role of the microbiota in modulating the effects of exposure on skeletal muscle responses are also promising. The comprehensive exposure assessment and its interactions with endogenous processes and the resulting biological effects deserve more efforts in the field of muscle health across the lifespan.

Exposome on skeletal muscle system: a mini-review

Purcaro, Cristina
Primo
;
Marramiero, Lorenzo
Secondo
;
Santangelo, Carmen;Bondi, Danilo
Penultimo
;
Di Filippo, Ester Sara
Ultimo
2024-01-01

Abstract

: Exposomics is an ever-expanding field which captures the cumulative exposures to chemical, biological, physical, lifestyle, and social factors associated with biological responses. Since skeletal muscle is currently considered as the largest secretory organ and shows substantial plasticity over the life course, this reviews addresses the topic of exposome and skeletal muscle by reviewing the state-of-the-art evidence and the most intriguing perspectives. Muscle stem cells react to stressors via phosphorylated eukaryotic initiation factor 2α and tuberous sclerosis 1, and are sensible to hormetic factors via sirtuin 1. Microplastics can delay muscle regeneration via p38 mitogen-activated protein kinases and induce transdifferentiation to adipocytes via nuclear factor kappa B. Acrolein can inhibit myogenic differentiation and disrupt redox system. Heavy metals have been associated with reduced muscle strength in children. The deep study of pollutants and biological features can shed new light on neuromuscular pathophysiology. The analysis of a time-varying and dynamic exposome risk score from a panel of exposure and phenotypes of interest is promising. The systematization of hormetic factors and the role of the microbiota in modulating the effects of exposure on skeletal muscle responses are also promising. The comprehensive exposure assessment and its interactions with endogenous processes and the resulting biological effects deserve more efforts in the field of muscle health across the lifespan.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/830971
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact