Cardiorespiratory fitness (CRF) provides important diagnostic and prognostic information. It is measured directly via laboratory maximal testing or indirectly via submaximal protocols making use of predictor parameters such as submaximal [Formula: see text], heart rate, workload, and perceived exertion. We have established an innovative methodology, which can provide CRF prediction based only on body motion during a periodic movement. Thirty healthy subjects (40% females, 31.3 ± 7.8 yrs, 25.1 ± 3.2 BMI) and eighteen male coronary artery disease (CAD) (56.6 ± 7.4 yrs, 28.7 ± 4.0 BMI) patients performed a [Formula: see text] test on a cycle ergometer as well as a 45 second squatting protocol at a fixed tempo (80 bpm). A tri-axial accelerometer was used to monitor movements during the squat exercise test. Three regression models were developed to predict CRF based on subject characteristics and a new accelerometer-derived feature describing motion decay. For each model, the Pearson correlation coefficient and the root mean squared error percentage were calculated using the leave-one-subject-out cross-validation method (rcv, RMSEcv). The model built with all healthy individuals' data showed an rcv = 0.68 and an RMSEcv = 16.7%. The CRF prediction improved when only healthy individuals with normal to lower fitness (CRF<40 ml/min/kg) were included, showing an rcv = 0.91 and RMSEcv = 8.7%. Finally, our accelerometry-based CRF prediction CAD patients, the majority of whom taking β-blockers, still showed high accuracy (rcv = 0.91; RMSEcv = 9.6%). In conclusion, motion decay and subject characteristics could be used to predict CRF in healthy people as well as in CAD patients taking β-blockers, accurately. This method could represent a valid alternative for patients taking β-blockers, but needs to be further validated in a larger population.

Proof of concept of a 45-second cardiorespiratory fitness self-test for coronary artery disease patients based on accelerometry

Sartor, Francesco
Ultimo
2017-01-01

Abstract

Cardiorespiratory fitness (CRF) provides important diagnostic and prognostic information. It is measured directly via laboratory maximal testing or indirectly via submaximal protocols making use of predictor parameters such as submaximal [Formula: see text], heart rate, workload, and perceived exertion. We have established an innovative methodology, which can provide CRF prediction based only on body motion during a periodic movement. Thirty healthy subjects (40% females, 31.3 ± 7.8 yrs, 25.1 ± 3.2 BMI) and eighteen male coronary artery disease (CAD) (56.6 ± 7.4 yrs, 28.7 ± 4.0 BMI) patients performed a [Formula: see text] test on a cycle ergometer as well as a 45 second squatting protocol at a fixed tempo (80 bpm). A tri-axial accelerometer was used to monitor movements during the squat exercise test. Three regression models were developed to predict CRF based on subject characteristics and a new accelerometer-derived feature describing motion decay. For each model, the Pearson correlation coefficient and the root mean squared error percentage were calculated using the leave-one-subject-out cross-validation method (rcv, RMSEcv). The model built with all healthy individuals' data showed an rcv = 0.68 and an RMSEcv = 16.7%. The CRF prediction improved when only healthy individuals with normal to lower fitness (CRF<40 ml/min/kg) were included, showing an rcv = 0.91 and RMSEcv = 8.7%. Finally, our accelerometry-based CRF prediction CAD patients, the majority of whom taking β-blockers, still showed high accuracy (rcv = 0.91; RMSEcv = 9.6%). In conclusion, motion decay and subject characteristics could be used to predict CRF in healthy people as well as in CAD patients taking β-blockers, accurately. This method could represent a valid alternative for patients taking β-blockers, but needs to be further validated in a larger population.
File in questo prodotto:
File Dimensione Formato  
14_Papini_et_al_PlosOne_2017.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/834175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact