Neural decoding of the visual system is a subject of research interest, both to understand how the visual system works and to be able to use this knowledge in areas, such as computer vision or brain-computer interfaces. Spike-based decoding is often used, but it is difficult to record data from the whole visual cortex, and it requires proper preprocessing. We here propose a decoding method that combines wide-field calcium brain imaging, which allows us to obtain large-scale visualization of cortical activity with a high signal-to-noise ratio (SNR), and convolutional neural networks (CNNs). A mouse was presented with ten different visual stimuli, and the activity from its primary visual cortex (V1) was recorded. A CNN we designed was then compared with other existing commonly used CNNs, that were trained to classify the visual stimuli from wide-field calcium imaging images, obtaining a weighted F1 score of more than 0.70 on the test set, showing it is possible to automatically detect what is present in the visual field of the animal.

Predicting Visual Stimuli From Cortical Response Recorded With Wide-Field Imaging in a Mouse

Moccia, Sara;
2024-01-01

Abstract

Neural decoding of the visual system is a subject of research interest, both to understand how the visual system works and to be able to use this knowledge in areas, such as computer vision or brain-computer interfaces. Spike-based decoding is often used, but it is difficult to record data from the whole visual cortex, and it requires proper preprocessing. We here propose a decoding method that combines wide-field calcium brain imaging, which allows us to obtain large-scale visualization of cortical activity with a high signal-to-noise ratio (SNR), and convolutional neural networks (CNNs). A mouse was presented with ten different visual stimuli, and the activity from its primary visual cortex (V1) was recorded. A CNN we designed was then compared with other existing commonly used CNNs, that were trained to classify the visual stimuli from wide-field calcium imaging images, obtaining a weighted F1 score of more than 0.70 on the test set, showing it is possible to automatically detect what is present in the visual field of the animal.
File in questo prodotto:
File Dimensione Formato  
Predicting_Visual_Stimuli_From_Cortical_Response_Recorded_With_Wide-Field_Imaging_in_a_Mouse.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/837871
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact