Neural decoding of the visual system is a subject of research interest, both to understand how the visual system works and to be able to use this knowledge in areas, such as computer vision or brain-computer interfaces. Spike-based decoding is often used, but it is difficult to record data from the whole visual cortex, and it requires proper preprocessing. We here propose a decoding method that combines wide-field calcium brain imaging, which allows us to obtain large-scale visualization of cortical activity with a high signal-to-noise ratio (SNR), and convolutional neural networks (CNNs). A mouse was presented with ten different visual stimuli, and the activity from its primary visual cortex (V1) was recorded. A CNN we designed was then compared with other existing commonly used CNNs, that were trained to classify the visual stimuli from wide-field calcium imaging images, obtaining a weighted F1 score of more than 0.70 on the test set, showing it is possible to automatically detect what is present in the visual field of the animal.
Predicting Visual Stimuli From Cortical Response Recorded With Wide-Field Imaging in a Mouse
Moccia, Sara;
2024-01-01
Abstract
Neural decoding of the visual system is a subject of research interest, both to understand how the visual system works and to be able to use this knowledge in areas, such as computer vision or brain-computer interfaces. Spike-based decoding is often used, but it is difficult to record data from the whole visual cortex, and it requires proper preprocessing. We here propose a decoding method that combines wide-field calcium brain imaging, which allows us to obtain large-scale visualization of cortical activity with a high signal-to-noise ratio (SNR), and convolutional neural networks (CNNs). A mouse was presented with ten different visual stimuli, and the activity from its primary visual cortex (V1) was recorded. A CNN we designed was then compared with other existing commonly used CNNs, that were trained to classify the visual stimuli from wide-field calcium imaging images, obtaining a weighted F1 score of more than 0.70 on the test set, showing it is possible to automatically detect what is present in the visual field of the animal.File | Dimensione | Formato | |
---|---|---|---|
Predicting_Visual_Stimuli_From_Cortical_Response_Recorded_With_Wide-Field_Imaging_in_a_Mouse.pdf
accesso aperto
Tipologia:
PDF editoriale
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.