We introduce a blockwise generalisation of the Antisymmetric Cross-Bicoherence (ACB), a statistical method based on bispectral analysis. The Multi-dimensional ACB (MACB) is an approach that aims at detecting quadratic lagged phase-interactions between vector time series in the frequency domain. Such a coupling can be empirically observed in functional neuroimaging data, e.g., in electro/magnetoencephalographic signals. MACB is invariant under orthogonal trasformations of the data, which makes it independent, e.g., on the choice of the physical coordinate system in the neuro-electromagnetic inverse procedure. In extensive synthetic experiments, we prove that MACB performance is significantly better than that obtained by ACB. Specifically, the shorter the data length, or the higher the dimension of the single data space, the larger the difference between the two methods.

A bicoherence approach to analyze multi-dimensional cross-frequency coupling in EEG/MEG data

Basti A.
Primo
;
Nolte G.;Guidotti R.;Ilmoniemi R. J.;Romani G. L.;Pizzella V.
Penultimo
;
Marzetti L.
Ultimo
2024-01-01

Abstract

We introduce a blockwise generalisation of the Antisymmetric Cross-Bicoherence (ACB), a statistical method based on bispectral analysis. The Multi-dimensional ACB (MACB) is an approach that aims at detecting quadratic lagged phase-interactions between vector time series in the frequency domain. Such a coupling can be empirically observed in functional neuroimaging data, e.g., in electro/magnetoencephalographic signals. MACB is invariant under orthogonal trasformations of the data, which makes it independent, e.g., on the choice of the physical coordinate system in the neuro-electromagnetic inverse procedure. In extensive synthetic experiments, we prove that MACB performance is significantly better than that obtained by ACB. Specifically, the shorter the data length, or the higher the dimension of the single data space, the larger the difference between the two methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/841851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact